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Swiss Finance Institute, Lugano, Switzerland
Address correspondence to Patrick Gagliardini, Università della Svizzera italiana (USI, Lugano) and Swiss
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Abstract
This article studies new tests for the number of latent factors in a large cross-sectional factor model with
small time dimension. These tests are based on the eigenvalues of variance–covariance matrices of (possi-
bly weighted) asset returns and rely on either an assumption of spherical errors, or instrumental variables
for factor betas. We establish the asymptotic distributional results using expansion theorems based on per-
turbation theory for symmetric matrices. Our framework accommodates semi-strong factors in the system-
atic components. We propose a novel statistical test for weak factors against strong or semi-strong factors.
We provide an empirical application to U.S. equity data. Evidence for a different number of latent factors
according to market downturns and market upturns is statistically ambiguous in the considered subperiods.
In particular, our results contradict the common wisdom of a single-factor model in bear markets.
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A central and practical issue in applied work with unobservable (i.e., latent) factors is to de-
termine the number of factors. For models with latent factors only, Connor and Korajczyk
(1993) are the first to develop a statistical test for the number of factors for large balanced
panels of individual stock returns in time-invariant models under covariance stationarity
and homoscedasticity. Unobservable factors are estimated by the method of asymptotic
principal components developed by Connor and Korajczyk (1986) (see also Stock and
Watson 2002a, 2002b). For heteroscedastic settings, the recent literature on large balanced
panels with static factors has extended the toolkit available to researchers. The first strand
of that literature focuses on consistent estimation procedures for the number of factors. Bai
and Ng (2002) introduce a penalized least-squares (LSs) strategy to estimate the number of
factors, at least one. Ando and Bai (2015) extend that approach when explanatory variables
are present in the linear specification (see Bai 2009 for homogeneous regression coeffi-
cients). Onatski (2010) looks at the behavior of the adjacent eigenvalues to determine the

* This article underlies the Halbert White Jr. Memorial JFEC invited lecture given by Patrick Gagliardini at the
Annual Society for Financial Econometrics Conference on June 25th 2022 at the University of Cambridge. We thank the
JFEC Editors Allan Timmermann and Fabio Trojani for the invitation, the discussants Alexei Onatski and Markus Pelger
for very insightful and constructive comments, as well as G. Genoni, L. Mancini, and participants at the Annual SoFiE
conference 2022 and at seminars at the Universities of Geneva and Warwick for helpful remarks.

Received: August 11, 2023. Editorial decision: August 14, 2023.Accepted: August 21, 2023.
VC The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

Journal of Financial Econometrics, 2023, 00, 1–41
https://doi.org/10.1093/jjfinec/nbad024

JFEC Invited Lecture 2022

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad024/7271793 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024



number of factors when the cross-sectional dimension (n) and the time-series dimension (T)
are both large and comparable. Ahn and Horenstein (2013) opt for the same strategy and
cover the possibility of zero factors through specifying a mock eigenvalue whose functional
form vanishes too. Caner and Han (2014) propose an estimator with a group bridge penali-
zation to determine the number of unobservable factors. Based on the framework of
Gagliardini, Ossola, and Scaillet (2016), Gagliardini, Ossola, and Scaillet (2019) build a
simple diagnostic criterion for approximate factor structures in large panel datasets. Given
observable factors, the criterion checks whether the errors are weakly cross-sectionally cor-
related or share at least one unobservable common factor (interactive effects). A general ver-
sion allows to determine the number of omitted common factors also for time-varying
structures (see Gagliardini, Ossola, and Scaillet 2020 for a survey of estimation of large di-
mensional conditional factor models in finance). A second strand of that literature develops
inference procedures for hypotheses on the number of latent factors. Onatski (2009)
deploys a characterization of the largest eigenvalues of a Wishart-distributed covariance
matrix with large dimensions in terms of the Tracy–Widom Law. To get a Wishart distribu-
tion, Onatski (2009) assumes either Gaussian errors or T much larger than n. Kapetanios
(2010) uses subsampling to estimate the limit distribution of the adjacent eigenvalues.

This article aims at complementing the above literature by considering a large cross-
sectional dimension but a fixed time series dimension, that is, a short panel. We develop new
tests for the number of latent factors with statistics based on the eigenvalues, and spacings
thereof, of variance–covariance matrices. The key idea is that, under assumptions on the error
terms detailed in the article, the eigenvalues of some finite-dimensional variance–covariance
matrices constructed from returns feature a flat pattern (possibly equal to zero) for orders
larger than k when ranked in decreasing order, where k is the number of latent factors. By
establishing the asymptotic distributions of the small eigenvalues of estimated variance–co-
variance matrices we develop testing procedures on the number of latent factors k.

In a short panel setting, Zaffaroni (2019) considers a methodology for inference on conditional
asset pricing models linear in latent risk factors, valid when the number of assets diverges but the
time series dimension is fixed, possibly very small. He shows that the no-arbitrage condition per-
mits to identify the risk premia as the expectation of the latent risk factors. This result paves the
way to an inferential procedure for the factor risk premia and for the stochastic discount factor,
spanned by the latent risk factors. Raponi, Robotti, and Zaffaroni (2020) have recently developed
tests of beta-pricing models and a two-pass methodology to estimate the ex-post risk premia
(Shanken 1992) associated with observable factors. Kim and Skoulakis (2018) deal with the
error-in-variable (EIV) problem of the two-pass methodology with small T by regression calibra-
tion. The small T perspective yields an effective approach to capture general forms of time-
variation in factor betas, risk premia, and number of factors by performing the factor analysis in
short subperiods (either non-overlapping or rolling windows) of the sample of interest.

The recent literature has extended asymptotic principal component methods to accom-
modate more general factor models. Fan, Liao, and Wang (2016) extend the characteristic-
based modeling in Connor and Linton (2007) and Connor, Hagmann, and Linton (2012)
by allowing the betas to include unknown asset-specific additive constants. They propose a
so-called projected principal component analysis (PCA) to estimate this specification with
time-invariant loadings and show that their factor estimates are consistent even if T is finite.
Pelger and Xiong (2022) instead let the factor loadings be functions of an observable state
variable. Their estimation under large n and T relies on minimizing a local version of the
LSs criterion underlying PCA, where localization is implemented by kernel smoothing. Gu,
Kelly, and Xiu (2021) consider the setting where the loadings are a non-parametric function
of a large dimensional vector of characteristics and use an autoencoder to estimate this rela-
tionship. Among the parametric approaches, Kelly, Pruitt, and Su (2017, 2019) model the
coefficients as linear functions of characteristics plus some noise term, while Chen,
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Roussanov, and Wang (2022) opt for semi-non-parametric non-linear modeling of non-
linear betas. Gagliardini and Ma (2019) study the problem of conducting inference on the
conditional factor space, including its dimension. The adopted non-parametric framework
is general regarding the beta dynamics and encompasses the aforementioned linear and
non-linear beta specifications. Finally, let us mention that there is also work on inference
for large dimensional models with unobservable factors with high-frequency data
(Ait-Sahalia and Xiu 2017; Pelger 2019, 2020; Cheng, Liao and Yang 2021). None of these
papers considers the problem of testing for the number of latent factors.

The outline of the article is as follows. In Section 1, we present the static factor model for
asset (excess) returns and discuss identification either via instrumental variables or a sphericity
assumption for the variance–covariance matrix of returns. We study the (in)consistency of the
PCA factor estimator, as well as interpretation in terms of EIV and in terms of incidental
parameters. Section 2 develops the eigenvalue test statistics based on instrumental variables
and based on eigenvalues of the return variance–covariance. Section 3 characterizes the as-
ymptotic distributions of the test statistics. To do so under large n and fixed T, we establish a
new second-order uniform asymptotic expansion of the small eigenvalues of a symmetric ma-
trix via perturbation theory. We indicate how to achieve feasible statistics by providing ade-
quate estimators of the characteristics of the asymptotic distribution. We dedicate Section 4
to extending our analysis to cover inference within a more general framework including weak
factors. We analyze testing for (semi-)strong factors versus vanishing factors, power under lo-
cal alternative hypotheses, and testing for weak factors. In Section 5, we provide the results of
Monte Carlo experiments to investigate the finite-sample properties of the considered test sta-
tistics. Section 6 presents the findings of our empirical analysis in short subpanels of stock
returns in the U.S. market. The concluding remarks are given in Section 7.

1 An Eigenvalue Testing Problem

We develop our inferential theory for the number of latent factors under a static model:

yi;t ¼ b0ift þ ei;t; (1)

where i ¼ 1; . . . ; n is the index for “individuals” (e.g., assets) and t ¼ 1; . . . ;T for time peri-
ods (e.g., months), ft is a k-dimensional vector of unobservable factors and ei;t is the idiosyn-
cratic error term. We introduce below some high-level conditions on latent factors and
error terms underlying our analysis, while we refrain from detailing the specific regularity
conditions.1 In asset pricing applications, variables yi;t denote asset (excess) returns and the
components of vector ft represent pervasive risk factors in the economy. We assume that the
time series dimension T is fixed, that is, we face short panels, while the cross-sectional di-
mension n tends to infinity in our asymptotics. We rewrite the model in matrix notation as:

yi ¼ Fbi þ ei; (2)

where yi and ei are T � 1 vectors and F is a T� k matrix. We work conditionally on a given
realization of the factor path, that is, we treat F as an unknown matrix parameter. Our fo-
cus is on inference on the number of latent factors k.

In this section, we develop the framework with strong factors, namely matrix Rb :¼

lim
n!1

1
n

Xn

i¼1
bib
0
i is positive definite. We consider the setting with semi-strong and weak

1 Those are given in Fortin, Gagliardini, Scaillet (2022a) for the approach based on factor analysis, which
generalizes the approach based on the PCA of variance–covariance matrix of returns considered in this article.
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factors in a later section. Next, we present two approaches for the identification of the
unknown number k of factors.

1.1 Identification by Instrumental Variables

We start by assuming the existence of an overidentified vector of instrumental variables. In
a large T framework, identification with instrumental variables is considered by Gagliardini
and Gourieroux (2017) in static (i.e., unconditional) factor models, and by Kelly, Pruitt,
and Su (2017, 2019) and Gagliardini and Ma (2019) in dynamic (i.e., conditional, or
time-varying beta) models.

Assumption 1. There exists a K-dimensional vector of instrumental variables zi, for
K>k, such that:

i) plim
n!1

1
n

Xn

i¼1
zie
0
i ¼ E½zie

0
i� ¼ 0,

ii) The K � k matrix C ¼ plim
n!1

1
n

Xn

i¼1
zib
0
i has full column rank.

Instrumental variables are cross-sectionally uncorrelated with error terms at all dates
t ¼ 1; . . . ;T, and full-rank correlated with the betas. We can take asset characteristics mea-
sured at t¼ 0, or their time average in a period previous to sample dates, as candidates for
instrumental variables.

Following Gagliardini and Gourieroux (2017) and Gagliardini and Ma (2019), let us de-
fine the limit cross-sectional average:

nt ¼ plim
n!1

1
n

Xn

i¼1

ziyi;t ; (3)

for any t, that is, the vector of returns of asymptotic static portfolios with weights propor-
tional to the characteristics that are the elements of zi. In a general setting with dynamic
betas and with large T, Gagliardini and Ma (2019) use time-varying characteristics zi;t in
Equation (3), which yield managed portfolios returns, but it makes inferential theory on the
number of factors very challenging and is not considered in our small T setting. Under
Assumption 1, we get from Equations (1) and (3):

nt ¼ Cft ; t ¼ 1; . . . ;T; (4)

or equivalently in matrix notation N ¼ FC0; where N is a T�K matrix, that is, a rank-k exact
matrix factorization. Hence, the asymptotic portfolio returns nt have a singular factor structure
without error terms. The sample second-moment matrix of nt for t ¼ 1; . . . ;T is given by:

Vn ¼ C~Rf C
0; (5)

where ~Rf ¼ 1
T

PT
t¼1 ftf 0t is the sample second-moment matrix of the latent factor. We can

normalize the latent factors vector such that ~Rf is diagonal, with diagonal elements ranked
in decreasing order, and the columns of matrix C are orthonormal vectors. Then, Equation
(5) corresponds to the spectral decomposition of Vn with diagonal matrix of eigenvalues ~Rf

and matrix of normalized eigenvectors C.
We assume that the factor path is such that ~Rf is invertible, which requires T � k, with

distinct eigenvalues. From Equation (5), the K�K variance matrix Vn is reduced rank, with
rank k. Thus, by denoting djð�Þ the jth largest eigenvalue of a symmetric matrix, the number
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of latent factors is identifiable by the property: djðVnÞ ¼ 0; j ¼ kþ 1; . . . ;K; while these
eigenvalues are strictly larger than zero for j � k. Moreover, under the proposed normali-
zation the latent factor values are identifiable as well (up to sign changes), namely ft ¼ C0nt

is the k-dimensional (population) Principal Components (PC) of vector nt.
The inference on the number of factors k coincides with testing on the rank of symmetric

matrix Vn. While there is extensive literature on testing for the rank of a matrix, it is known
that standard procedures may not apply in the case of symmetric matrices. In our setting, if
the nt were observed in a sample without estimation error, the testing problem would be
“degenerate” since the components of vector nt feature deterministic relationships allowing
for exact determination of k. Since the nt have to be estimated by cross-sectional averaging,
the corresponding estimation error drives the distributional properties of the test. It explains
the non-standard setting of the testing problem at hand, and its similarity with the problem
of inference on the number of unit canonical correlations among two principal component
vectors estimated from large panels as studied by Andreou et al. (2019).

1.2 Identification by the Variance–Covariance Matrix of Returns

As a second approach to the identification of the latent factor space with fixed T, let us con-
sider the cross-sectional second-moment matrix of returns

Vy ¼ plim
n!1

1
n

Xn

i¼1

yiy0i: (6)

In alternative to the availability of instruments (Assumption 1), here we assume asymptotic
unconditional homoscedasticity and no serial correlation of the errors, namely spherical er-
ror terms.

Assumption 2. We have Ve :¼ plim
n!1

1
n

Xn

i¼1
eie
0
i ¼ r2IT ; where r2 > 0 is a constant.

Assumption 2 allows, for example, for idiosyncratic conditional heteroscedasticity in the in-
dividual error processes, as in the data generating process (DGP) 3 considered for the Monte
Carlo experiments (Section 5). It excludes, for example, a strong factor in idiosyncratic return
volatilities; see Renault, Van Der Heijden, and Werker (2022) for an arbitrage pricing theory
with idiosyncratic variance factors. The assumption of spherical error terms underlies the test-
ing methodology of Connor and Korajczyk (1993) and the analysis of Zaffaroni (2019).

From Assumption 2, Equation (6), and plim
n!1

1
n

Xn

i¼1
bie
0
i ¼ 0, we have: Vy ¼ FRbF0 þ r2IT :

We can work with the factor normalization such that ~Rf ¼ Ik and matrix Rb ¼ diagðr2
b;jÞ is diag-

onal. Then, the first k eigenvalues of Vy are Tr2
b;j þ r2, for j ¼ 1; . . . ;k, associated with eigenvec-

tors that are the columns of matrix 1ffiffiffi
T
p F, while the T � k smallest eigenvalues of Vy are equal to

r2. We assume that the eigenvalues r2
b;j are distinct. Then, the number of factors k is identifiable

under Assumption 2 since the eigenvalue difference is such that djðVyÞ � djþ1ðVyÞ ¼ 0, for j ¼
kþ 1; . . . ;T � 1; while this difference is strictly larger than 0, for j � k.

1.3 PCA, EIV, and Incidental Parameters

In large panels, the standard estimator for the latent factor space is based on PCA. It con-
sists of the (normalized) eigenvectors of the sample analog of matrix Vy associated with the
k largest eigenvalues. Bai and Ng (2002), Bai (2003), and Stock and Watson (2002a,
2002b) provide pioneering work for the study of the large sample properties with both n
and T large, including a consistent selection procedure for the number of latent factors.
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Forni et al. (2000) consider the identification and estimation of generalized dynamic-factor
models with large n, T. Theorem 4 in Bai (2003) shows that the PCA estimator is consistent
with fixed T and n large if, and only if, Assumption 2 holds (see also Connor and
Korajczyk 1987). Zaffaroni (2019) establishes the asymptotic normality of the PCA estima-
tor and consistent selection of the number of latent factors in that setting. Essentially consis-
tency of PCA estimators holds because the columns of F are eigenvectors of Vy associated
with the k largest eigenvalues under Assumption 2.

In this section, we first derive the result in Theorem 4 of Bai (2003) using different argu-
ments.2 Then, we illustrate that result and Assumptions 1 and 2 from the viewpoint of the
EIV problem and the incidental parameter problem.

1.3.1 (In)consistency of the PCA factor estimator
For a generic matrix Ve, the limit variance–covariance matrix of returns is Vy ¼ FRbF0 þ Ve.
To get the spectral decomposition of this matrix, let us define the orthogonal matrix

R ¼ 1ffiffiffi
T
p F : Q
h i

, where Q is a T � ðT � kÞ matrix whose columns are an orthonormal basis

of the complement of the range of F (with F0F=T ¼ Ik in our normalization). Then:

R0VyR ¼
TRb þ

1
T

F0VeF
1ffiffiffiffi
T
p F0VeQ

1ffiffiffiffi
T
p Q0VeF Q0VeQ

0
BBB@

1
CCCA:

The first k eigenvectors of matrix Vy are the columns of F up to a rotation if, and only if,
(i) the out-of-diagonal block 1ffiffiffi

T
p F0VeQ vanishes, and (ii) the eigenvalues of the upper-left

block TRb þ 1
T F0VeF are larger than any eigenvalue of the lower-right block Q0VeQ. Using

that MF ¼ IT � 1
T FF0 is the orthogonal projection onto the orthogonal complement of the

range of F, we get the next result.

Proposition 1. The PCA estimator is consistent for given F with fixed T and n!1, that
is, plim

n!1
F̂ ¼ F up to a rotation, if and only if,

MFVeF ¼ 0;

dkðTRb þ
1
T

F0VeFÞ > d1ðMFVeMFÞ:

8<
: (7)

The condition MFVeF ¼ 0 is equivalent to VeF ¼ FA for a k� k (symmetric, non-singular)
matrix A, that is, the range of F is an invariant subspace of Ve.

3 As in Theorem 4 of Bai
(2003), let us require consistency of the PCA estimator for any F, and not just for a given F.
Then, for a given matrix Ve independent of F, the condition MFVeF ¼ 0 holds for every F if,
and only if, Ve ¼ r2IT for a constant r2 > 0, namely Assumption 2 holds. In that case,
the second condition in System (7) is met as well. Hence, we deduce that Assumption 2 is

2 In particular, a proof not using Lemma D.1 in Bai (2003).
3 The condition MFVeF ¼ 0 is the condition for OLS and GLS estimators to coincide in a regression with de-

sign matrix F and variance–covariance matrix of the errors Ve.
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sufficient and necessary for the consistency of the PCA estimator for any factor path F as
stated in Theorem 4 of Bai (2003).

1.3.2 Interpretation in terms of error-in-variable
In this subsection, we provide an interpretation for the conditions in Proposition 1 in terms
of an EIV problem. For this purpose, recall that the PCA estimator solves the first-order
conditions of the LS problem for factor values and loadings:

F̂ ¼ 1
n

Xn

i¼1

yib̂
0
i

 !
1
n

Xn

i¼1

b̂ib̂
0
i

 !�1

; b̂i ¼
1
T

F̂
0
yi; i ¼ 1; . . . ;n;

with the normalization F̂
0
F̂=T ¼ Ik and 1

n

Pn
i¼1 b̂ib̂

0
i diagonal. Hence, the factor values result

from a multivariate cross-sectional regression of returns onto estimated loadings. With fixed
T, the estimation error in the latter does not vanish asymptotically, and it originates an EIV
problem. In fact, the LS problem can be seen as a multivariate regression

yi ¼ Fb̂i þ vi; i ¼ 1; . . . ;n; (8)

with matrix parameter F, error vi ¼ ei � Fðb̂i � biÞ, and endogenous regressor b̂i. The OLS
estimator F̂ in the regression (8)4 is consistent if, and only if,

plim
n!1

1
n

Xn

i¼1

vib̂
0
i ¼ 0: (9)

To understand how this orthogonality condition of the error and the estimated regressor is
linked to the conditions of Proposition 1 on the consistency of the PCA estimator, suppose

indeed plim F̂ ¼ F. Then, using b̂i ¼ bi � 1
T F̂
0ðF̂ � FÞbi þ 1

T F̂
0
ei and plim

n!1

1
n

Xn

i¼1
eib
0
i ¼ 0,

we have:

plim
n!1

1
n

Xn

i¼1

vib̂
0
i ¼

1
T

plim
n!1

1
n

Xn

i¼1

ei �
1
T

FF0ei

� �
e0iF ¼

1
T

MFVeF:

Thus, Equation (9) holds if MFVeF ¼ 0, that is the first condition in Equation (7). This con-
dition is necessary for the consistency of the PCA estimator with fixed T and to eliminate
the endogeneity issue from the EIV problem.

The EIV framework is also useful to interpret the IV condition in Assumption 1. Indeed,
the variables zi can be seen as instruments for the endogenous regressors b̂i in regression
(8). However, in contrast to the standard IV framework, regression (8) is infeasible since the
b̂i has to be obtained at the same time as the estimate of F. Moreover, while Equation (4)
corresponds to the “population normal equation” for IV in the multivariate cross-sectional
regression at date t, we cannot identify matrix C by the sample cross-moments of the zi and
bi, the true betas being unknown. Instead, matrices C and F have to be identified jointly by
the spectral decomposition of the sample second-moment Vn under the normalization of the
latent factors to have ~Rf ¼ F0F=T diagonal and C0C ¼ Ik. 5

4 This regression is unfeasible because the b̂ i need to be estimated at the same time as F̂ , and not sequentially.
5 Shanken (1992), Kim and Skoulakis (2018), and Raponi, Robotti, and Zaffaroni (2020) use IV approaches

(or similar) with fixed T to estimate ex-post risk premia of observed factors in the second pass cross-sectional re-
gression. That use of IV differs from ours because betas are obtained in the first pass by regressing returns onto
observed factors across time.
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1.3.3 Interpretation in terms of incidental parameters
We can also analyze the (in)consistency of the PCA estimator with fixed T from the vantage
point of the well-known incidental parameter problem of the panel data literature (Neyman
and Scott 1948; Lancaster 2000).6 Indeed, in a setting with fixed T, we can see matrix F as
a common parameter in the panel model (2), while the loadings bi play the role of incidental
parameters. The number of incidental parameters grows with the cross-sectional sample
size n so that the information to estimate F does not necessarily accumulate, leading
potentially to inconsistency of the estimator for F.

The PCA estimator minimizes the LS criterion (i.e., minus the Gaussian pseudo log-
likelihood) given by Lnðb;FÞ ¼ 1

n

Pn
i¼1ðyi � FbiÞ0ðyi � FbiÞ with the normalization

F0F=T ¼ Ik. The minimizer of bi for a given F is b̂iðFÞ ¼ 1
T F0yi. The concentrated LS crite-

rion becomes:

Lc
nðFÞ :¼ Lnðb̂ðFÞ; FÞ ¼

1
n

Xn

i¼1

yi
0MFyi: (10)

Using that yi ¼ F0bi þ ei, where F0 is the matrix of true factor values, and the properties of
the trace, we get from Equation (10):

plim
n!1

Lc
nðFÞ ¼ Tr½F00MFF0Rb� þ Tr½MFVe� ¼ �

1
T

Tr½F0ðF0RbF00 þ VeÞF�; (11)

up to terms that do not dependent on F. The minimizer F� of Equation (11) is the matrix of the
standardized eigenvectors of Vy ¼ F0RbF00 þ Ve associated with the k largest eigenvalues.
Under the conditions of Proposition 1, we get F� ¼ F0. The population concentrated criterion
(11) being minimized at the true value implies the consistency of the PCA estimator.

An interesting perspective on factor estimation with instrumental variables (Assumption 1)
from the viewpoint of the incidental parameter problem is suggested by Section 4 in
Chamberlain (1992). The idea is to construct orthogonality restrictions that get rid of the inci-
dental parameters and identify the common parameter in a panel model with random effects.
Suppose we have “exogeneity” of the instrumental variables such that E½eijzi� ¼ 0, which is a
stronger condition than Assumption 1. Then, considering the loadings bi as random, the setting
of Chamberlain (1992) Section 4 applies. Indeed, we have E½yijzi;bi� ¼ FðhÞbi, where FðhÞ
denotes the matrix of factor values once we impose the normalization restriction that the lower
k� k block is the identity Ik, and denote the vec of the upper ðT � kÞ � k block of this matrix
as the parameter h, that is, FðhÞ ¼ ð~h 0 : IkÞ0 and h ¼ vecð~hÞ. By the Law of Iterated
Expectation, we get E½yijzi� ¼ FðhÞhðziÞ, where hðziÞ :¼ E½bijzi�. Thus, we end up with a condi-
tional moment restriction model with a finite-dimensional parameter h and a functional param-
eter hð�Þ. Chamberlain (1992) shows how to design a method of moment estimator for h that
achieves the semi-parametric efficiency bound with n!1 and fixed T. Specifically, we have
the conditional moment restriction E½Mðzi; hÞyijzi� ¼ 0, where Mðz; hÞ ¼ IT �
FðhÞ½FðhÞ0XðzÞ�1FðhÞ��1FðhÞ0XðzÞ�1 is the oblique projection on the orthogonal complement
of the range of FðhÞ associated with the scalar product corresponding to the positive definite
matrix XðzÞ�1. With optimal instruments Aðz; hÞ, we get an orthogonality restriction
E½Aðzi; hÞ0Mðzi; hÞyi� ¼ 0 for semi-parametric efficient estimation of h. As we focus mainly on
the inference on the number of factors in this article, we do not explore further this route. We
conjecture however that a test on the number of latent factors can be designed as a specification
test for the conditional moment restriction.

6 Based on a discussion of Zaffaroni (2019) by P. Gagliardini.
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Finally, we note that Fan, Liao, and Wang (2016) also follow a random effects approach
and assume that E½bijzi� ¼ hðziÞ for an unknown function hð�Þ which they estimate by a
Sieve approach using the variance–covariance matrix of returns projected onto the instru-
ments zi. They develop an estimation method for the number of latent factors in the vein of
Ahn and Horenstein (2013).

2 Eigenvalue Test Statistics

We develop statistics to test the null hypothesis H0ðkÞ of k latent common factors against
the alternative H1ðkÞ of more than k latent factors in short panels, namely T kept fixed.

2.1 Test Statistic Based on Instrumental Variables

Let us estimate vector nt by the cross-sectional average of the observations times the
instruments:

n̂t ¼
1
n

Xn

i¼1

ziyi;t ; (12)

for any t. From Equations (1) and (12), these aggregate measurements satisfy:

n̂t ¼ ~Cft þ
1ffiffiffi
n
p ut ; (13)

where ~C ¼ 1
n

Pn
i¼1 zib

0
i and ut ¼ 1ffiffi

n
p
Pn

i¼1 ziei;t: The symbol tilde is used instead of the hat

since ~C is an infeasible (yet consistent) estimator of the matrix C. From the Central Limit
Theorem (CLT) and Assumption 1 (i), vector ut for any t is asymptotically Gaussian as n!
1 (see below). From Equation (13), the vectors n̂t obey a “small” latent factor model, with
latent factors ft and idiosyncratic noise scaled with 1=

ffiffiffi
n
p

.
The estimator of the second-moment matrix Vn is the sample second moment:

V̂ n ¼
1
T

XT

t¼1

n̂t n̂
0
t: (14)

The first test statistic is based on the sum of the K � k smallest eigenvalues of the matrix V̂ n

in Equation (14), that is,

T ðkÞ ¼
XK

j¼kþ1

djðV̂ nÞ: (15)

Under the regularity conditions detailed below, T ðkÞ in Equation (15) converges to the sum
of the K � k smallest eigenvalues of a matrix Vn, namely 0 under the null hypothesis H0ðkÞ,
and a strictly positive constant under the alternative H1ðkÞ. Thus, values of the test statistic
T ðkÞ above a well-chosen threshold imply rejection of H0ðkÞ in favor of H1ðkÞ. To deter-
mine the threshold for the rejection region, we obtain the asymptotic distribution of T ðkÞ
and show that, after suitable rescaling, this statistic is asymptotically distributed as a
weighted sum of independent chi-square variates under H0ðkÞ as n!1 and T is fixed.

Following the literature on rank testing (see, e.g., Robin and Smith 2000) the statistic can
be generalized considering the family T ðkÞ ¼

PK
j¼kþ1 /ðdjðV̂ nÞÞ, where the function /ð�Þ is
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such that /ð0Þ ¼ 0; /ðuÞ > 0 for u> 0, and /0ð0Þ ¼ 1. By the delta method, the asymptotic
distribution of the test statistic under the null does not depend on the choice of the function
/ð�Þ. The latter has an impact on the power properties.

To study the large sample properties of the test statistic T ðkÞ, let us note that:

V̂ n ¼ ~V n þ Ŵ; (16)

where ~V n ¼ ~C~Rf
~C
0
; ~Rf ¼ 1

T

PT
t¼1 ftf 0t ; and

Ŵ ¼ 1ffiffiffi
n
p ~C

1
T

XT

t¼1

ftu0t

 !
þ 1ffiffiffi

n
p 1

T

XT

t¼1

utf 0t

 !
~C
0 þ 1

n
1
T

XT

t¼1

utu0t

 !
: (17)

It is convenient to assume the normalization of the latent factor vector such that the col-
umns of the matrix ~C are orthonormal and matrix ~Rf is diagonal. This normalization is
sample dependent (because it involves ~C instead of C), and is coherent with the normaliza-
tion adopted in the previous section for identification. It yields the spectral decomposition
of ~V n with diagonal eigenvalues matrix ~Rf and matrix of standardized eigenvectors ~C.

In Equation (16), the matrix V̂ n is written as the sum of a reduced rank matrix ~V n, with
rank k in sample, and a “small perturbation” Ŵ given by Equation (17). The distributional
properties of the test are driven by the perturbation Ŵ, which is affecting the K � k smallest

eigenvalues of V̂ n. The perturbation Ŵ has a term at order Op
1ffiffi
n
p
� �

and a term at order

Op
1
n

� �
. The first term is the dominant one in probability order. However, the joint distribution

of its elements is degenerate because it involves reduced rank matrices. It means that the term at
order Opð1=nÞ dominates for certain linear combinations of the elements of Ŵ. In particular,

the asymptotic distribution of small eigenvalues of V̂ n involves second-order effects (see below).

2.2 Test Statistics Based on Eigenvalues of the Return Variance–Covariance

We estimate Vy by the sample second-moment matrix V̂ y ¼ 1
n

Pn
i¼1 yiy0i. A test statistic based

on the eigenvalue difference is:

SðkÞ ¼ dkþ1ðV̂ yÞ � dTðV̂ yÞ: (18)

The statistic SðkÞ in Equation (18) converges in probability to 0 under the null H0ðkÞ, and to
a positive constant under the alternative H1ðkÞ. The differencing has the purpose to eliminate
the term r2 that is common across all eigenvalues of Vy. Note that statistic SðkÞ equals the
telescope sum of eigenvalue differences djðV̂ yÞ � djþ1ðV̂ yÞ from j ¼ kþ 1 to j ¼ T � 1.

Other eigenvalue differences can be considered, and different functional forms can be
used to aggregate those differences. In the vein of Onatski (2009), we can consider the sta-
tistic built by the maximal ratio of consecutive eigenvalue differences

S�ðkÞ ¼ max
j¼kþ1;...;k�

djðV̂ yÞ � djþ1ðV̂ yÞ
djþ1ðV̂ yÞ � djþ2ðV̂ yÞ

; (19)

with kþ 1 � k� � T � 2. Under the alternative of more than k (but less than k� þ 2) fac-
tors, the statistic S�ðkÞ in Equation (19) diverges because there is a ratio between a strictly
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positive numerator and an asymptotically vanishing denominator. In the large T setting of
Onatski (2009), the statistic’s denominator is the difference between two asymptotically
vanishing quantities, while this is not the case with finite T.

We use the expansion

V̂ y ¼ ~V y þ Û; (20)

where

~V y ¼ F~RbF0 þ ~r2IT ; ~Rb ¼
1
n

Xn

i¼1

bib
0
i;

Û ¼ 1ffiffiffi
n
p 1ffiffiffi

n
p
Xn

i¼1

eib
0
i

 !
F0 þ F

1ffiffiffi
n
p
Xn

i¼1

bie
0
i

 !
þ 1ffiffiffi

n
p
Xn

i¼1

ðeie
0
i � r2

i ITÞ
" #

; (21)

where ~r2 ¼ 1
n

Pn
i¼1 r2

i and r2
i > 0 are positive constants. We can normalize the latent factors

such that ~Rf ¼ Ik and the matrix ~Rb ¼ diagð~r2
b;jÞ is diagonal, with diagonal elements ranked

in decreasing order. This normalization is sample dependent, and coherent with that consid-
ered in Section 1.2 in the population. In fact, under this normalization, the matrix F ¼ Fn

may be sample dependent, but we omit index n for expository purpose. Then we have
djð~V yÞ ¼ T~r2

b;j þ ~r2, for j ¼ 1; . . . ;k, and djð~V yÞ ¼ ~r2, for j ¼ kþ 1; . . . ;T. The eigenvec-

tors of ~V y to the first k eigenvalues are the columns of matrix 1ffiffiffi
T
p F. The perturbation matrix

Û is of probability order Opð1=
ffiffiffi
n
p
Þ under Assumption 2 and regularity conditions.

3 Asymptotic Distributions of the Test Statistics

Let T be kept fixed in the asymptotics, and n!1. To derive the asymptotic distribution of
the statistic T ðkÞ, resp. the statistics SðkÞ and S�ðkÞ, we use a second-order, resp. first-
order, expansion for the small eigenvalues of matrices V̂ n and V̂ y. We start with a general
result which covers matrix perturbations as in Equations (16) and (20).

3.1 Asymptotic Expansion of the Small Eigenvalues via Perturbation Theory

Let A ¼ UDU0 be a symmetric K�K matrix of rank k, where D is the diagonal matrix of
the k non-zero eigenvalues, and U is the K� k matrix of the associated orthonormal eigen-
vectors. Let

Â ¼ Aþ Ŵ; (22)

be an estimator of matrix A, where symmetric matrix Ŵ is the estimation error (i.e., a
“small perturbation”). We want to derive an asymptotic expansion for the K � k smallest
eigenvalues of Â, namely djðÂÞ for j ¼ kþ 1; . . . ;K, as a power series of Ŵ.

We have the following result that is proved in Appendix.

Theorem 1. Let A ¼ UDU0 be a symmetric K�K matrix of rank k, where D is the
diagonal matrix of the k non-zero eigenvalues, and U is the K� k matrix of the
associated orthonormal eigenvectors. Let Â ¼ Aþ Ŵ, where Ŵ is a symmetric
“small perturbation” matrix such that jjŴjj � 1

3jjD�1jjðKþ1Þ3=2. Then:
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dkþjðÂÞ ¼ djðQ0ŴQ�Q0ŴUD�1U0ŴQÞ þOðjjD�1jj2K4jjŴjj3Þ; (23)

for j ¼ 1; . . . ;K� k, where Q is a K� ðK� kÞ matrix whose orthonormal columns
span the null space of A, and the remainder term is uniform.

The eigenvalue in the RHS of Equation (23) is invariant to the choice of matrix Q whose range
spans the orthogonal complement of the range of F. The uniformity of the remainder term in
Theorem 1 is in the sense that its norm is upper bounded by CjjD�1jj2K4jjŴjj3 for a universal
constant C that is independent of Â and A. The remainder term in Equation (23) is of third or-
der in perturbation Ŵ and depends on matrix A solely via its dimension K and the squared
Frobenius norm of its generalized inverse jjD�1jj2 ¼

Pk
j¼1 djðAÞ�2. Hence, when matrix A has

small eigenvalues among the first k, the remainder term in the expansion gets larger, other
things being equal. Accounting for these effects is important when considering semi-strong or
weak factors (see Section 4). Also, we highlight the effect of the matrix dimension K, which is fi-
nite in the applications under fixed T in this article, but allows to cover cases with T growing in
the double asymptotics case. It is because of the asymptotic expansion holding under a repre-
sentation with a uniform remainder term. This representation applies with both deterministic,
and random matrices, in which case the bound is almost sure in probability.

3.2 Asymptotic Distribution of T ðkÞ with Fixed T
3.2.1 Asymptotic characterization
We apply Theorem 1 to the statistic T ðkÞ, that is, the sum of the K � k smallest eigenvalues

of the matrix V̂ n which satisfies Equation (16). We have jj~R�1
f jj finite and Ŵ ¼ Op

1ffiffi
n
p
� �

, so

that jjŴjj � 1
3jj~R�1

f jjðKþ1Þ3=2 w.p.a. 1. Then, by using that the sum of the eigenvalues of a ma-

trix corresponds to its trace, we have

T ðkÞ ¼ Tr½ ~P0Ŵ ~P � ~P
0
Ŵ~C~R

�1
f

~C
0
Ŵ ~P� þOp

1
n3=2

� �
; (24)

where ~P is a K� ðK� kÞ matrix whose orthonormal columns span the orthogonal comple-
ment of the range of matrix ~C, and Ŵ is given in Equation (17). Hence, we get:

~P
0
Ŵ ~P ¼ 1

n
~P
0 1

T

XT

t¼1

utu0t

 !
~P;

~P
0
Ŵ~C ¼ 1ffiffiffi

n
p ~P

0 1
T

XT

t¼1

utf 0t

 !
þ 1

n
~P
0 1

T

XT

t¼1

utu0t

 !
~C:

In particular, in the “first-order” term ~P
0
Ŵ ~P, the components of Ŵ scaled by 1ffiffi

n
p in

Equation (17) yield no contribution because ~P
0~C ¼ 0. From Equation (24), and using

~C ¼ CþOp
1ffiffi
n
p
� �

, we get:

T ðkÞ ¼ 1
n

Tr P0
1
T

XT

t¼1

utu0t �
1
T

XT

t¼1

utf 0t

 !
~R
�1
f

1
T

XT

t¼1

ftu0t

 !( )
P

" #
þOp

1
n3=2

� �
: (25)

On the RHS within the curly brackets, we have the residual matrix of the multivariate re-
gression of ut onto ft, for t ¼ 1; . . . ;T.
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Let U ¼ ½u1 : . . . : uT �0 and F ¼ ½f1 : . . . : fT �0. Then we can write:

Tr P0
1
T

XT

t¼1

utu0t �
1
T

XT

t¼1

utf 0t

 !
~R
�1
f

1
T

XT

t¼1

ftu0t

 !( )
P

" #

¼ 1
T

Tr½P0ðU0U �U0FðF0FÞ�1F0UÞP� ¼ 1
T

Tr½U0MFUMC�

¼ 1
T

vec½U0�0ðMF 	MCÞvec½U0�;

where MF ¼ IT � FðF0FÞ�1F0 and MC ¼ PP0 ¼ IK � CðC0CÞ�1C0 are idempotent matrices
of rank T � k and K � k. Thus, matrix MF 	MC is idempotent with rank ðT � kÞðK� kÞ.
Moreover, under regularity conditions, the next assumption is implied by a CLT.

Assumption 3. We have vec½U0� ¼ 1ffiffi
n
p
Pn
i¼1

ei 	 zi ) Nð0;RUÞ; as n!1, where RU is a
KT � KT matrix.

By the result on the distribution of idempotent quadratic forms of Gaussian vectors, we
get the next result.

Proposition 2. Under Assumptions 1 and 3, regularity conditions and the null hypothesis
H0ðkÞ of k latent factors, as n!1 and T is fixed, we have:

nT ðkÞ ) 1
T

XðT�kÞðK�kÞ

j¼1

kjv
2
j ;

where the v2
j are independent chi-square variables with one degree of freedom, and the

kj are the ðT � kÞðK� kÞ non-zero eigenvalues of matrixK :¼ ðMF 	MCÞ
RUðMF 	MCÞ. Under the alternative hypothesis H1ðkÞ that we have more than k
strong factors, nT ðkÞ diverges to infinity in probability at order OpðnÞ.

In Proposition 2, the asymptotic distribution under the null is a weighted average of indepen-
dent chi-square distributions. The divergence of the statistic under the alternative H1ðkÞ ensures
a consistent test. Robin and Smith (2000) consider tests for the rank of a matrix. They also use
statistics based on sums of (functions of) the small eigenvalues and show that they are distrib-
uted asymptotically as weighted sums of chi-square distributions. However, their Theorem 3.2
does not apply for the test statistic T ðkÞ because their Assumption 2.4 is not met here.

When the vectors ut are asymptotically independent across time and homoscedastic, we have
RU ¼ r2ðIT 	QzzÞ, where Qzz ¼ lim 1

n

Pn
i¼1 E½ziz0i�.

7 Then, K ¼ r2ðMF 	 ðMCQzzMCÞÞ, and
its non-zero eigenvalues are equal to the eigenvalues of the matrix r2P0QzzP, each with multi-
plicity T� k. Thus, we have

nT ðkÞ ) r2

T

XK�k

j¼1

djðP0QzzPÞv2
j ðT � kÞ; (26)

where the v2
j ðT � kÞ are independent chi-square variables with T � k degrees of freedom.

7 More precisely, we have RU ¼ lim 1
n

Pn
i¼1 E½eie0i 	 ziz0i� ¼ lim 1

n

Pn
i¼1 E½eie0i� 	 E½ziz0i� ¼Ve 	Qzz with

Ve ¼ r2IT .
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3.2.2 Feasible statistic
We can compute the critical values associated with the weighted sum of chi-square variables
in Equation (26) by simulations after estimating the eigenvalues of the matrix P0QzzP
through their empirical counterparts. In particular, we estimate P̂ from the orthogonal
complement of the range of Ĉ, that is, the eigenvector matrix of V̂ n associated with the k
largest eigenvalues. To estimate r2, we use the residuals êi ¼MF̂ yi for F̂ ¼ N̂Ĉ. By using
that F̂ ¼ F þ opð1Þ, we have

plim
n!1

1
n

Xn

i¼1

êiê
0
i ¼MF plim

n!1

1
n

Xn

i¼1

eie
0
i

 !
MF ¼ r2MF:

By the properties of the trace and Tr½MF� ¼ T � k, we deduce that a consistent estimator
for r2 is

r̂2 ¼ 1
nðT � kÞ

Xn

i¼1

XT

t¼1

ê2
i;t : (27)

With fixed T, we need a correction for the degrees of freedom in Equation (27).
To get a feasible statistic in the more general setting of Proposition 2, let us define R̂U ¼

1
n

Pn
i¼1ð̂eiê

0
iÞ 	 ðziz0iÞ and let

K̂ ¼ ðMF̂ 	 M̂CÞR̂UðMF̂ 	 M̂CÞ;

with M̂C ¼ IK � ĈĈ
0
. Under regularity conditions, we have plim

n!1
R̂U ¼ ðMF 	 IKÞ

RUðMF 	 IKÞ. Then, the matrix K̂ is a consistent estimator of K for n!1, and we can use its
eigenvalues k̂j to weight the chi-square distributions and simulate the critical values of the statis-

tic. The projection matrix MF 	MC in K implies the consistency of K̂ despite the fact that R̂U

is inconsistent for RU with fixed T.
Under the alternative H1ðkÞ, the critical value of the simulated distribution with estimated

quantities converges to a finite constant as well. This fact, together with the divergence of
the test statistics under H1ðkÞ, guarantees the consistency of the test based on the feasible
statistics.

3.3 Asymptotic Distributions of SðkÞ and S�ðkÞ with Fixed T
3.3.1 Asymptotic characterization
To get the asymptotic distribution of the small eigenvalues of V̂ y, we apply Theorem 1 to
the matrix V̂ y � ~r2IT using expansion Equation (20). Indeed, the matrix ~V y � ~r2IT ¼
F~RbF0 has reduced rank k. Then:

dkþjðV̂ yÞ ¼ ~r2 þ dkþjðV̂ y � ~r2ITÞ ¼ ~r2 þ dkþjð~Vy � ~r2IT þ ÛÞ

¼ ~r2 þ 1ffiffiffi
n
p dj Q0

1ffiffiffi
n
p
Xn

i¼1

ðeie
0
i � r2

i ITÞ
 !

Q

 !
þOp

1
n

� �
;
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for j ¼ 1; . . . ;T � k, where Q is a T � ðT � kÞ matrix whose columns are orthonormal vec-
tors spanning the orthogonal complement of the range of F.8 Stopping the expansion at
first-order is enough to characterize the asymptotic distribution.9

Assumption 4. As n!1, we have 1ffiffi
n
p
Pn

i¼1ðeie0i � r2
i ITÞ ) Z, where Z is a T�T

Gaussian matrix.

Then,
ffiffiffi
n
p
½dkþjðV̂ yÞ � dkþjþ1ðV̂ yÞ� ) djðQ0ZQÞ � djþ1ðQ0ZQÞ jointly for

j ¼ 1; . . . ;T � k� 1. By the Continuous Mapping Theorem, we get the next result.

Proposition 3. Under Assumptions 2 and 4, regularity conditions and the null hypothesis
H0ðkÞ of k latent factors, as n!1 and T is fixed, we have:

ffiffiffi
n
p
SðkÞ ) d1ðZ�Þ � dT�kðZ�Þ;

S�ðkÞ ) maxj¼1;...;k��k
djðZ�Þ � djþ1ðZ�Þ

djþ1ðZ�Þ � djþ2ðZ�Þ
;

where Z� ¼ Q0ZQ. Under the alternative hypothesis H1ðkÞ of more than k factors,ffiffiffi
n
p
SðkÞ and S�ðkÞ diverge in probability to infinity at order Opð

ffiffiffi
n
p
Þ.

Suppose the error terms are independent across i and t, and stationary across t, that is, a set-
ting implying Assumption 2. Then, by the standard CLT, the symmetric random matrix
Z ¼ ðzijÞ in Assumption 4 is such that its elements on and above the main diagonal are mu-
tually independent with zii 
 Nð0; gÞ and zij 
 Nð0;qÞ for i 6¼ j, where g ¼ lim 1

n

Pn
i¼1 gi

and q ¼ lim 1
n

Pn
i¼1 r4

i , for r2
i ¼ V½ei;t� and gi ¼ V½e2

i;t�. Further, if the error terms are normal,
we have g ¼ 2q, and the random matrix Z=

ffiffiffi
q
p

is in the Gaussian Orthogonal Ensemble
GOE(T) for dimension T�T, see for example, Tao (2012).10 Moreover, because
Q0ei 
 Nð0; r2

i IT�kÞ, the matrix Z�=
ffiffiffi
q
p

is in GOE(T � k). It means that, under Gaussian
innovations, the limiting distributions for large n and fixed T do not depend on the matrix
Q underlying Z� ¼ Q0ZQ, and thus are independent of the specific realized path of the
factor in the time window of size T. Our Monte Carlo results under a Gaussian error design
in Section 5 corroborate that theoretical statement.

Onatski (2009) considers the large T (and large n) setting and establishes the asymptotic
distribution of the eigenvalues of the sample second-moment matrix using random matrix
theory. To make a bridge between Proposition 3 and the results in Onatski (2009), we see
that V½Q0ei� ¼ r2

i IT�k and, by the CLT, any finite-dimensional block of Q0ei ¼
P

t qtei;t tends
to a standard Gaussian distribution as T !1, where q0t is the t-th row vector of matrix Q.
This suggests that, for large T, the asymptotic distributions in Proposition 3 are as if the error
terms were normal, and 1ffiffi

q
p Z� is asymptotically in the GOE(T � k). The distribution of the

largest eigenvalues of a matrix in the GOE is TW, that is, the Tracy–Widom law, when the
matrix dimension is large (see e.g., Johnstone 2001 concerning the first eigenvalue). This
parallels the analysis developed in Onatski (2009) and suggests that, with n;T !1 and k�

8 Theorem 1 implies that the asymptotic distribution involves the orthogonal complement to the range of Fn,
that is, the rotation of F ensuring the sample-dependent normalization such that ~Rb is diagonal. However, the
ranges of Fn and F coincide, which explains why we use matrix Q.

9 Because second-order terms are negligible asymptotically for statistics SðkÞ and S�ðkÞ, their large sample
distributions can be established by simpler methods than Theorem 1. The second-order expansion in Theorem 1
is needed for statistic T ðkÞ.

10 The T � T symmetric random matrix Z ¼ ðzi;jÞ is in the GOE(T) if zii 
 Nð0; 2Þ, and zi;j 
 Nð0; 1Þ, for
i 6¼ j, and the elements on and above the diagonal are mutually independent.
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fixed, S�ðkÞ ) max
j¼1;...;k��k

lj � ljþ1

ljþ1 � ljþ2
, where the lj follow a joint TW distribution.11 In fact,

Onatski (2009) finds a Tracy–Widom distribution of Type 2 for his statistic because it
involves the eigenvalues of a Wishart matrix based on complex-valued variates.

Under fixed T, the asymptotic distributions in Proposition 3 do not have known analytical
characterizations in terms of closed-form expressions for pdf or cdf, except in some cases—
mainly in the setting with Gaussian errors (see next subsection for a discussion on how to im-
plement feasible statistics in a general setting). For a matrix Z� in the GOE(2), the eigenvalue
difference s ¼ d1ðZ�Þ � d2ðZ�Þ follows the Wigner–Dyson distribution with pdf
f2ðsÞ ¼ ðs=4Þe�s2=8, for s � 0, that is the distribution of twice the square root of a v2ð2Þ vari-

able.12 Hence, it provides the asymptotic distribution of
ffiffi
n
q

q
SðkÞ with T � k ¼ 2 and Gaussian

errors ei;t 
 Nð0; r2
i Þ independent across i and t. In Section 4.2, we reconsider this result and

expand it to local alternatives and non-Gaussian errors. For Z� in GOE(3), using the joint dis-
tribution of eigenvalues (Ginibre formula, see for example, Tao 2012) and building on Rao
(2020), in the companion paper Fortin, Gagliardini, and Scaillet (2022b) we show that the joint
distribution of the eigenvalue spacings s1 ¼ d1ðZ�Þ � d2ðZ�Þ and s2 ¼ d2ðZ�Þ � d3ðZ�Þ is:

‘ðs1; s2Þ ¼
1

4
ffiffiffiffiffiffi
6p
p exp � 1

6
ðs2

1 þ s2
2 þ s1s2Þ

� �
s1s2ðs1 þ s2Þ1s1�0;s2�0:

The level curves of this distribution are displayed in Figure 1. The distribution is symmetric
and shows negative association between s1 and s2 for large values. By marginalization, the
distribution of s ¼ d1ðZ�Þ � d3ðZ�Þ ¼ s1 þ s2 has pdf

f3ðsÞ ¼
s
4

e�
1
8s

2
2U

s

2
ffiffiffi
3
p

� �
� 1

� �
s2

4
� 3

� �
þ 3sffiffiffiffiffiffi

6p
p e�

1
24s2

" #
;

for s � 0. Furthermore, the eigenvalue spacings’ ratio r ¼ d1ðZ�Þ�d2ðZ�Þ
d2ðZ�Þ�d3ðZ�Þ ¼ s1=s2 for Z� in

GOE(3) follows a distribution with pdf g3ðrÞ ¼ 27
8

rþr2

ð1þrþr2Þ5=2 ; r � 0 (see Atas et al. 2013 for

the result up to the normalizing constant). The pdfs f3ðsÞ and g3ðrÞ are displayed in
Figure 2. The pdf of the eigenvalue spacings ratio is skewed and features Pareto tail. These

results yield the asymptotic distributions of
ffiffi
n
q

q
SðkÞ and S�ðkÞ for T � k ¼ 3 and Gaussian

errors and allow getting easily the critical values.

3.3.2 Feasible statistics
To get feasible statistics in a general setting, we have to determine the critical value from
simulations of the asymptotic distributions in Proposition 3, which needs draws of
Z� ¼ Q0ZQ.
i) Independent errors
To start with, let us consider the setting where the errors are independent across i and t,
with generic distribution admitting finite fourth-order moment. First, we need to simulate
matrix Z from i.i.d. draws of zii 
 Nð0; gÞ and zij 
 Nð0; qÞ for i 6¼ j. Let us provide

11 Here, our goal is to provide a heuristic argument to show the link between the results with fixed T and
those with T !1, and not to give another formal proof of the results in Onatski (2009). For instance, we delib-
erately overlook the difference between the double asymptotics with n;T !1 jointly and a sequential asymp-
totics with first n!1 and then T !1.

12 The Wigner–Dyson distribution is sometimes defined with a different normalization, for example, to have
a mean equal to 1 (e.g., Rao 2020), and is often referred to as “Wigner surmize.”
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Figure 1. Level curves for the joint pdf of eigenvalue spacings s1 ¼ d1ðZ �Þ � d2ðZ �Þ and s2 ¼ d2ðZ �Þ � d3ðZ �Þ
for random matrix Z � in GOE(3).
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Figure 2. The pdf f3ðsÞ of eigenvalue spacing s ¼ d1ðZ �Þ � d3ðZ �Þ and the pdf g3ðrÞ of eigenvalue spacings’

ratio r ¼ ½d1ðZ �Þ � d2ðZ �Þ�=½d2ðZ �Þ � d3ðZ �Þ� for random matrix Z � in GOE(3).
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consistent estimators of q ¼ lim 1
n

Pn
i¼1 r4

i and g ¼ lim 1
n

Pn
i¼1 gi, where r2

i ¼ V½ei;t� and
gi ¼ V½e2

i;t�. Let êi ¼MF̂ yi be the vector of residuals, and ~ei ¼MFei. Define the estimators:

m̂1 ¼
1
n

Xn

i¼1

XT

t¼1

ê2
i;t

 !2

; m̂2 ¼
1
n

Xn

i¼1

XT

t¼1

ê4
i;t:

To compute their probability limits as n!1, we use that, for ei;t 
 ð0;r2
i Þ independent

across i and t, we have Xe :¼ lim 1
n

Pn
i¼1 E½ðeie0iÞ 	 ðeie0iÞ� ¼ gA1 þ qA2 where A1 ¼

diag½KT � and A2 ¼ IT2 þKT � 2diag½KT � þ vec½IT �vec½IT �0, and KT is the commutation
matrix for order T (see Magnus and Neudecker 2007). From the consistency of F̂ and us-
ing

PT
t¼1 ~e2

i;t ¼ e0iMFei ¼ vec½MF�0ðei 	 eiÞ, we get:

plimn!1 m̂1 ¼ plimn!1
1
n

Xn

i¼1

XT

t¼1

~e2
i;t

 !2

¼ lim
n!1

1
n

Xn

i¼1

E
XT

t¼1

~e2
i;t

 !2
2
4

3
5

¼ vec½MF�0Xevec½MF� ¼ gaþ qb;

(28)

where a ¼ vec½MF�0diag½KT �vec½MF� ¼
PT

t¼1½ðMFÞtt�
2 and b ¼ vec½MF�0A2vec½MF� ¼ 2ðT �

k� aÞ þ ðT � kÞ2. Moreover, by using ~e2
i;t ¼ ðet 	 etÞ0ðMF 	MFÞðei 	 eiÞ, where et is the t-th

unit vector in R
T , and

PT
t¼1 ~e4

i;t ¼ Tr½ðMF 	MFÞ½ðeie0iÞ 	 ðeie0iÞ� ðMF 	MFÞdiag½KTÞ�, we
have:

plimn!1 m̂2 ¼ plimn!1
1
n

Xn

i¼1

XT

t¼1

~e4
i;t ¼ lim

n!1

1
n

Xn

i¼1

E
XT

t¼1

~e4
i;t

" #

¼ Tr½ðMF 	MFÞXeðMF 	MFÞdiag½KT �� ¼ gcþ qd;

(29)

where c ¼ Tr½ðMF 	MFÞdiag½KT �ðMF 	MFÞdiag½KT �� ¼
PT

t¼1

PT
s¼1½ðMFÞt;s�

4 and d ¼ Tr

½ðMF 	 MFÞA2ðMF 	MFÞdiag½KT �� ¼ 3a� 2c. If 3a2 6¼ cðT � kÞðT � kþ 2Þ, we have that
the determinant ad � bc 6¼ 0 in the linear system defined by Equations (28) and (29), and
the linear mapping from g; q and the plims of m̂1 ; m̂2 is one-to-one. Moreover, the coeffi-
cients a;b; c;d can be consistently estimated by replacing F with F̂. Hence, by solving the

two linear Equations (28) and (29) with estimated coefficients â; b̂; ĉ; d̂ and unknowns g
and q, we get consistent estimators ĝ and q̂ from m̂1 and m̂2.
Second, once we have i.i.d. Gaussian draws for Z based on the estimates ĝ and q̂, we need
to estimate Q to build the draws for Z� ¼ Q0ZQ. We can consistently estimate the orthogo-
nal complement of the range of F by MF̂ . Since the eigenvalues of Z� are invariant by rota-
tion of the columns of Q, we can pick any T � k columns of MF̂ and orthogonalize them to
build Q̂. In practice, we take the first T � k ones.
ii) General case: parametric variance structure
In the general case, the errors are idiosyncratic martingale difference sequences but may fea-
ture some form of time dependence. Suppose that we have a parametric specification
V½vec½Z�� ¼ XðhÞ for the variance of the Gaussian matrix Z in Assumption 4, with an un-
known vector parameter h 2 R

p (an element of which is q). We derive this parametric speci-
fication for a model with ARCH(1) errors that we consider in our Monte Carlo
experiments in Section 5. Now, we use V½vec½Z��� ¼ ðQ0 	Q0ÞV½vec½Z��ðQ	QÞ and
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V½vec½Z�� ¼ lim
n!1

1
n

Xn

i¼1
V½ei 	 ei� ¼ plim

n!1

1
n

Xn

i¼1
ðeie
0
iÞ 	 ðeie

0
iÞ � q � vec½IT �vec½IT �0. Then,

we can obtain a consistent estimator of parameter h with fixed T by minimum distance:

ĥ ¼ argmin
h

					ðQ̂ 	 Q̂Þ0 1
n

Xn

i¼1

ðêiê
0
iÞ 	 ðêiê

0
iÞ � q � vec½IT �vec½IT �0 � XðhÞ

 !
ðQ̂ 	 Q̂Þ

					 (30)

where Q̂ is a consistent estimator of Q as in the previous subsection, and jj � jj denotes the
Frobenius matrix norm. While the residual êi approximates MFei and not ei with fixed T,
this fact does not affect the consistency of ĥ because Q0MF ¼ Q0. Since vec½Z�� has
1
2 T � kÞðT � kþ 1Þ



different elements, the necessary order condition for identification is
p � 1

2 ðT � kÞðT � kþ 1Þ½12 T � kÞðT � kþ 1Þ þ 1�=2



.
iii) General case: non-parametric variance estimator
When a parametric specification XðhÞ for the variance structure is not available, we can con-
struct a feasible test statistic by using a non-parametric estimator for the variance–covariance
matrix of the Gaussian matrix appearing in the limiting distribution. Indeed, the asymptotic dis-
tribution of statistics

ffiffiffi
n
p
SðkÞ is the distributional limit of d1ðQ0ZnQÞ � dT�kðQ0ZnQÞ, where

Zn ¼ 1ffiffi
n
p
Pn

i¼1½eie0i � r2
i IT �. Now, because

Q0ZnQ ¼ 1ffiffiffi
n
p
Xn

i¼1

½Q0eie
0
iQ� r2

i IT�k�

¼ 1ffiffiffi
n
p
Xn

i¼1

Q0eie
0
iQ�

e0iMFei

T � k
IT�k

� �
þ 1ffiffiffi

n
p
Xn

i¼1

e0iMFei

T � k
� r2

i

� � !
IT�k;

and adding to a matrix a multiple, here ð 1ffiffi
n
p
Pn

i¼1½
e0iMFei

T�k � r2
i �Þ, of the identity matrix changes all

eigenvalues by the same amount, we deduce that
ffiffiffi
n
p
SðkÞ ) d1ðZ

�Þ � dT�kðZ
�Þ, where Z

�
is

the distributional limit of 1ffiffi
n
p
Pn

i¼1½Q0eie0iQ�
e0iMFei

T�k IT�k�, that is, Z
� ¼ Z� � 1

T�k Tr½Z��IT�k.

Besides, under the sphericity assumption of error terms, that is, E½eie0i� ¼ r2
i IT , the matrix

variables Q0eie0iQ�
e0iMFei

T�k IT�k have zero mean. Then, we can consistently estimate the variance

matrix X :¼ V½vec½Z��� by

X̂ ¼ 1
n

Xn

i¼1

ðQ̂ 0
êiÞ 	 ðQ̂

0
êiÞ �

ê0iêi

T � k
vec½IT�k�

� �
ðQ̂0êiÞ 	 ðQ̂

0
êiÞ �

ê0iêi

T � k
vec½IT�k�

� �0
;

as n!1 and T is fixed. Again, the equality MFQ ¼ Q results in the “inconsistency” of the
residuals for fixed T having no effect on the consistency of estimator X̂ .

A direct approach based on the non-parametric estimation of the variance of vec½Z��
would be more difficult because of the unobserved r2

i . We avoid this difficulty by recogniz-

ing that replacing r2
i with the unbiased (infeasible) estimate e0iMFei

T�k does not affect the eigen-
values spacing underlying our tests. This strategy paves the way to the non-parametric

variance estimator X̂ relying on the inconsistent êi, that we have presented in this section.
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4 Weak Factors

In this section, we extend our analysis to cover inference with weak factors and similar
deviations from the dichotomy of strong factor versus no factor considered so far. From the
viewpoint of testing for the number of factors, we can see a weak factor as a local alternative
hypothesis. We focus on the setting with identification via the variance–covariance matrix of
the returns. We normalize the latent factors with ~Rf ¼ Ik and ~Rb ¼ diagð~r2

b;jÞ diagonal, with
diagonal elements ranked in decreasing order. We assume that, as n!1, we have:

njj ~r2
b;j ! cj > 0; (31)

for an exponent jj � 0 and any j (the sequence of the jj is non-decreasing by construction).
This setting accommodates various forms of factors: a strong factor with jj ¼ 0, a semi-
strong factor with jj 2 ð0;1=2Þ, a weak factor with jj ¼ 1=2 (Kleibergen 2009), and a
vanishing factor with jj > 1=2 (Onatski 2012, 2015). The latter ones include factors with
zero loadings across all assets (jj ¼ þ1), the so-called useless or irrelevant factors; see Kan
and Zhang (1999a, 1999b) and Gospodinov, Kan, and Robotti (2014).13 When jj > 0 the
eigenvalue ~r2

b;j shrinks to zero at the rate Oðn�jjÞ in the drifting DGP. This can originate for
example, from the fact that a given factor loads exclusively on firms in a sector with
negligible weight compared to the entire economy, or that the loadings of a factor are very
small across all stocks. For a weak factor, the magnitude of the eigenvalue is on the same
scale as the estimation error, namely Oðn�1=2Þ.

Below we use the next result, which has been proved by Carlini and Gagliardini (2022)
and provides a perturbation expansion for the non-zero eigenvalues of a symmetric matrix
and the associated eigenvectors.14 It extends the results in, for example, Izenman (1975) by
providing a more accurate control of the remainder terms.

Theorem 2. Let A ¼ UDU0 be a symmetric K�K matrix of rank k, where D is the
diagonal matrix of the k distinct non-zero eigenvalues kj ¼ djðAÞ, and
U ¼ ½U1 : � � � : Uk� is the K� k matrix of the associated orthonormal eigenvectors.
Let Â ¼ Aþ Ŵ, where the symmetric matrix Ŵ is a “small perturbation,” with
normalized eigenvectors Ûj and eigenvalues djðÂÞ. Then:

djðÂÞ ¼ djðAÞ þU0jŴUj þO
�
qjðAÞjjŴjj2

�
;

and

Ûj ¼ Uj þ
Xk

‘¼0;‘6¼j

1
kj � k‘

P‘ŴUj þO
�
qjðAÞ2jjŴjj2

�
;

for j ¼ 1; . . . ;k, where Pj ¼ UjU0j; P0 ¼ IK �UU0 ¼ QQ0, the orthonormal columns
of the K� ðK� kÞ matrix Q span the null space of A, scalar k0 ¼ 0 is the null
eigenvalue,

13 We work here with the factor rotation such that ~Rb is diagonal. However, when applied to the eigenvalues
of ~Rb, the exponents jj are invariant to the chosen factor rotation. In fact, the eigenvalues of R0 ~RbR and ~Rb coin-
cide, when R is an orthogonal matrix.

14 See Proposition 6 in Carlini and Gagliardini (2022). The proof of that proposition yields the statement as
in our Proposition 2.
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qjðAÞ ¼
Xk

‘¼0;‘6¼j

jkj � k‘j�1; j ¼ 1; . . . ;k;

and the remainder terms are uniform w.r.t. A and Ŵ.

The remainder terms in the expansions of the j-th eigenvalues and eigenvectors involve the
matrix A solely by means of qjðAÞ, that is, a measure of the (inverse) proximity of eigenval-
ues. More precisely, qjðAÞ is large if there are other eigenvalues of A close to djðAÞ. Thus,
Theorem 2 covers the case where matrix A has nearly overlapping eigenvalues, or some
eigenvalues are nearly null.

4.1 Testing for (Semi-)Strong Factors versus Vanishing Factors

Let us suppose there are k strong or semi-strong factors, and T � k vanishing factors.
Namely, we have jj < 1=2 and cj > 0 for j ¼ 1; . . . ;k, and jj > 1=2 and cj � 0 for
j ¼ kþ 1; . . . ;T. We want to conduct inference on the number of (semi-)strong factors by
testing the null H0ðkÞ of k (semi-)strong factors against the alternative H1ðkÞ of more than
k (semi-)strong factors, for a given integer k. This setting extends the analysis of Section 2
to accommodate intermediate forms of factors, namely semi-strong factors in the systematic
component, and factors with asymptotically vanishing loadings in the idiosyncratic compo-
nent. To simplify, we assume that the eigenvalues up to rank k remain distinct asymptoti-
cally.15 Then, we have qjð~RbÞ ¼ OðnjjÞ. From Equation (20) and Theorem 2, we get:

djðV̂ yÞ ¼ ~r2 þ T~r2
b;j þ

1
T

F0jÛFj þOpðnjj�1Þ

¼ ~r2 þ T~r2
b;j þ

1ffiffiffi
n
p ð

ffiffiffiffi
T
p

U0Wn þ
ffiffiffiffi
T
p

W 0
nU þU0ZnUÞjj þOpðnjj�1Þ;

for j ¼ 1; . . . ; k, where Zn ¼ 1ffiffi
n
p
Pn

i¼1ðeie0i � r2
j ITÞ; Wn ¼ 1ffiffi

n
p
Pn

i¼1 eib
0
i: Moreover, using

Theorem 1 with Ŵ ¼ Û þ
PT

j¼kþ1 ~r2
b;jFjF0j for Û as in Equation (21), and jjD�1jj ¼ Oðn�jkÞ

we get:

dkþjðV̂ yÞ ¼ ~r2 þ 1ffiffiffi
n
p djðQ0ZnQÞ þOpðnjk�1 þ n�jkþ1Þ;

for j ¼ 1; . . . ;T � k. Hence,
ffiffiffi
n
p
½djðV̂ yÞ � djþ1ðV̂ yÞ� diverges to þ1 in probability as

n!1, for j ¼ 1; . . . ;k, while we have
ffiffiffi
n
p
½dkþjðV̂ yÞ � dkþjþ1ðV̂ yÞ� ) djðQ0ZQÞ �

djþ1ðQ0ZQÞ for j ¼ 1; . . . ;T � k� 1.

Proposition 4. Under the null hypothesis H0ðkÞ of k (semi-)strong factors, the
asymptotic distributions of test statistics

ffiffiffi
n
p
SðkÞ and S�ðkÞ for n!1 and fixed T

are as in Proposition 3. The statistics diverge in probability to infinity under the
alternative hypothesis H1ðkÞ of more than k (semi-)strong factors.

Thus, the test statistics
ffiffiffi
n
p
SðkÞ and S�ðkÞ are valid to conduct inference on the number

of latent factors also when these factors are only semi-strong. The divergence rate under the
alternative is slower compared to the case with strong factors only. For instance, if the
ðkþ 1Þ-th factor is semi-strong, that is, jkþ1 < 1=2, statistics

ffiffiffi
n
p
SðkÞ and S�ðkÞ diverge at

rate Opðn1=2�jkþ1Þ.
15 That is, we have either jjþ1 > jj or cjþ1 < cj (or both) for j ¼ 1; . . . ; k� 1.
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Let us consider now the estimates of factor values. From Equation (20) and Theorem 2,
we get:

Ûj ¼ Uj þ
1ffiffiffi
n
p

Xk

‘¼0;‘6¼j

1

~r2
b;j � ~r2

b;‘

P‘ð
ffiffiffiffi
T
p

WnU0 þ
ffiffiffiffi
T
p

UW 0
n þ ZnÞUj þOpðn2jj�1Þ; (32)

for j ¼ 1; . . . ;k, with ~r2
b;0 ¼ 0; P0 ¼ QQ0 and P‘ ¼ U‘U0‘. Thus, the estimated factor values

are consistent for n!1 and fixed T, but with a slower convergence rate for semi-strong
factors: Ûj ¼ Uj þOpðn�1=2þjjÞ.16 Due to the consistency of factor estimates, we can follow
the procedures detailed in Section 3.3.1 to define feasible statistics based on simulating the
asymptotic laws. The asymptotic expansion (32) also paves the way to establish the asymp-
totic normality of the factor estimates.

4.2 Power Analysis under Local Alternative Hypotheses

In this section, we consider a local power analysis. We test the null hypothesis H0ðkÞ of k
(semi-)strong factors against the local alternative hypothesis H1;locðkÞ in which the ðkþ 1Þ-th
factor is weak, namely jj < 1=2 for j � k; jkþ1 ¼ 1=2 with

ffiffiffi
n
p

~r2
b;kþ1 ! ckþ1 > 0, and jj >

1=2 for j > kþ 1.
We consider the test statistics

ffiffiffi
n
p
SðkÞ and S�ðkÞ. From Theorem 1 with

Ŵ ¼ 1ffiffi
n
p ðT

ffiffiffi
n
p

~r2
b;kþ1Ukþ1U0kþ1 þ

ffiffiffiffi
T
p

WnU0 þ
ffiffiffiffi
T
p

UW 0
n þ ZnÞ, we have under H1;locðkÞ:

ffiffiffi
n
p
½dkþjðV̂ yÞ � dkþjþ1ðV̂ yÞ� ) djðTckþ1nkþ1n

0
kþ1 þ Z�Þ � djþ1ðTckþ1nkþ1n

0
kþ1 þ Z�Þ;

for j ¼ 1; . . . ;T � k� 1, where Ukþ1 ¼ 1ffiffiffi
T
p Fkþ1 is the normalized vector of the weak factor

values and nkþ1 ¼ Q0Ukþ1. For the choice of matrix Q such that Ukþ1 is its first column, we
have nkþ1 ¼ e1, that is, the first unit vector of dimension T � k. Thus, under the local alter-
native H1;locðkÞ, we have the asymptotic distributions:

ffiffiffi
n
p
SðkÞ ) d1ðZ�1Þ � dT�kðZ�1Þ ¼: f1;

S�ðkÞ ) maxj¼1;...;k��k
djðZ�1Þ � djþ1ðZ�1Þ

djþ1ðZ�1Þ � djþ2ðZ�1Þ
;

as n!1 and T is fixed, where Z�1 ¼ Tckþ1e1e01 þ Z�, that is random matrix Z� gets shifted
by deterministic quantity Tckþ1 in the upper-left entry.

Let us first consider the setting where errors are Gaussian such that ei;t 
 Nð0;r2
i Þ mutu-

ally independent across i and t. Then, 1ffiffi
q
p Z� is a symmetric ðT � kÞ � ðT � kÞ random ma-

trix in the GOE. The asymptotic distributions under both the null and the local alternative
are independent of the factor path. The asymptotic local power curve for statistic

ffiffiffi
n
p
SðkÞ is

pða;T � kÞ ¼ P½f1 > sa� as a function of a ¼ Tckþ1ffiffi
q
p and T � k, for asymptotic size a, where sa

is the ð1� aÞ-quantile of the asymptotic distribution under the null, that is, P½f0 � sa� ¼
1� a for f0 ¼ d1ðZ�Þ � dT�kðZ�Þ. The asymptotic power function depends on Tckþ1ffiffi

q
p and T �

k only, because we can write Z�1 ¼
ffiffiffi
q
p Tckþ1ffiffi

q
p e1e01 þ 1ffiffi

q
p Z�

� �
(the distribution of 1ffiffi

q
p Z� depends

on ðT � kÞ only, and the scaling factor
ffiffiffi
q
p

is immaterial for power). A similar result applies
for the asymptotic power of statistic S�ðkÞ. By dividing ckþ1=

ffiffiffi
q
p

by the square root
ffiffiffi
n
p

of
the cross-sectional sample size n, we get asymptotically the ratio between the average

16 Here, we have that Uj ¼ 1ffiffiffi
T
p Fj, and Fj contains a sample-dependent rotation due to the normalization in

the sample.

22 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad024/7271793 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024



squared loadings on the weak factor ~r2
b;kþ1 and the square root of the average squared vari-

ance of errors—a kind of signal-to-noise ratio for the weak factor. Then, Tckþ1=
ffiffiffi
q
p

has an
interpretation analog to a concentration parameter in weak instrument regressions.

When T � k ¼ 2, we can easily characterize the asymptotic distribution of
ffiffiffi
n
p
SðkÞ under

the local alternative. Indeed, we have f1 ¼ d1ðZ�1Þ � d2ðZ�1Þ ¼
ffiffiffi
q
p ðd1ðae1e01 þ 1ffiffi

q
p Z�Þ

�d2ðae1e01 þ 1ffiffi
q
p Z�ÞÞ, and by using the formula for the two roots of a second-order polynomial,

we get d1ðae1e01 þ 1ffiffi
q
p Z�Þ � d2ðae1e01 þ 1ffiffi

q
p Z�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz�11 � z�22 þ aÞ2 þ 4ðz�12Þ

2
q

, where z�i;j are

the elements of the symmetric 2� 2 matrix Z�=
ffiffiffi
q
p

in the GOE. By using that ðz�11 � z�22Þ=2

and z�12 are mutually independent standard Gaussian variables, we deduce that 1
4q f2

1 is distrib-

uted as non-central chi-square v2ð2; a2=4Þ with 2 degrees of freedom and non-centrality param-
eter a2=4 ¼ 1

4q ðTckþ1Þ2. Thus, under H1;locðkÞ, we have

n
4q
SðkÞ2 ) v2 2;

T2c2
kþ1

4q

 !
: (33)

Hence, when T � k ¼ 2, the statistic obtained by rescaling SðkÞ2 in Equation (33) has a cen-
tered v2ð2Þ asymptotic distribution under the null. In fact, by change of variable, we deduce
that the pdf of the asymptotic distribution of

ffiffiffi
n
p
SðkÞ is f2ðsÞ ¼ s

4q e�s2=8q, which
corresponds to “Wigner surmise” for eigenvalue spacing in 2�2 GOE random matrices
(see Section 3.3). Under the local alternatives, the asymptotic distribution in Equation (33)
features a non-centrality parameter (in analogy to, for example, Hansen statistic for
overidentification test and other chi-square tests).

For T � k > 2, we can obtain the asymptotic power curves by simulating the draws
1ffiffi
q
p Z�, here 10,000 draws, from the GOE in dimension ðT � kÞ � ðT � kÞ. In Figure 3, we

display the asymptotic local power curves for statistics
ffiffiffi
n
p
SðkÞ and S�ðkÞ as functions of

Tckþ1=
ffiffiffi
q
p

, for T � k ¼ 3, and asymptotic size a ¼ 0:05. This setting corresponds to, for ex-
ample, T¼ 6 periods and k¼ 3 (semi-)strong factors under the null. In this case and for a
cross-sectional size of for example, n¼ 1000, the range in the horizontal axis of ckþ1 covers
values of the (modified) signal-to-noise ckþ1=

ffiffiffiffiffiffi
qn
p

between 0 and about 0.20. The asymp-
totic local power curve for the statistic

ffiffiffi
n
p
SðkÞ ramps up steeply, and the consistency of the

test is achieved quickly even locally. We confirm the good power properties in our Monte
Carlo study for finite samples.

In the more general case with non-Gaussian errors, the asymptotic power under local
alternatives depends on the factor path via the matrix Q. To understand this effect in a sim-
ple setting, consider again the case with T � k ¼ 2. By expanding the above arguments, it is
possible to show that

n
4q
SðkÞ2 ) d1v

2ð1;l1Þ þ d2v
2ð1;l2Þ; (34)

where dj ¼ 1þ ðg� � 2Þkj and l1 ¼ a2

4d1

r2
12

r2
12þðk1�r11Þ2

and l2 ¼ a2

4d2
1� r2

12

r2
12þðk1�r11Þ2

� �
, with

g� ¼ g=q, and the two non-central chi-square variables are independent. Here, k1 ¼
1
2 ðr11 þ r22 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr11 � r22Þ2 þ 4r2

12

q
Þ and k2 ¼ k1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr11 � r22Þ2 þ 4r2

12

q
are the eigenval-

ues of the symmetric matrix X ¼ r11 r12

r12 r22

� �
where r11 ¼ 1

4

P
t ðQ2

t;1 �Q2
t;2Þ

2; r22 ¼
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P
t Q2

t;1Q2
t;2 and r12 ¼ 1

2

P
tðQ2

t;1 �Q2
t;2ÞQt;1Qt;2, and Qt;k are the elements of the T � 2 ma-

trix Q. Here, X is the empirical variance–covariance matrix of the zero mean vectors
1
2 Q2

t;1 �Q2
t;2Þ

�
and Qt;1Qt;2. For Gaussian errors, g� ¼ 2, and hence d1 ¼ d2 ¼ 1 and

l1 þ l2 ¼ a2

4 ¼
ðTckþ1Þ2

4q , which yields the asymptotic distribution in Equation (33). Moreover,

for generic distribution of the errors but T large, the elements of matrix X scale with T�1, so
that the eigenvalues kj tend to 0 when T !1, the effect of the factor path vanishes and we re-
cover the Gaussian case.

As an illustration, let us particularize the result in the case with T¼ 2 and k¼ 0, namely,
we test the null of no factors in a large panel with two time periods and consider the local
alternative of a weak factor. From Equation (34) we get the asymptotic distribution under
local alternatives n

4qSðkÞ
2 ) g�

2 v2ð1; a2

2g� ð1� 2uÞ2Þ þ v2ð1; a2uð1� uÞÞ, where u :¼ Q2
11.

The distribution depends on the factor path by means of Q2
11, that is the squared standard-

ized value of the weak factor in the first period. In Figure 4, we plot the asymptotic local
power curves for different values of parameters u 2 ½0; 1� and g� ¼ 5. The local power is
lower than for the Gaussian design (g� ¼ 2). The effect of the factor path on local power is
not uniform. For small value of Tckþ1=

ffiffiffiffi
T
p

, the local power is marginally larger with u ¼ 1
(or u ¼ 0, not displayed), that is when the weak factor has values that vary a lot between
the two periods. Instead, for larger values of Tckþ1=

ffiffiffiffi
T
p

the local power is larger for
u ¼ 0:5, that is when the weak factor has a more stable path.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42
0

0.1
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0.9

1

Figure 3. Asymptotic local power under local alternatives in a Gaussian setting: we take T � k ¼ 3, and

nominal size a ¼ 0:05. We use 10,000 draws of the symmetric matrix Z ¼ ðzij Þ with zii 
 Nð0; 2qÞ and
zij 
 Nð0; qÞ for i 6¼ j .
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4.3 Testing for Weak Factors

Suppose there are k � 1 strong, or semi-strong, factors in the systematic component (main-
tained hypothesis). For the kth factor, we want to test the null hypothesis of a weak factor
Hk

0 : jk ¼ 1=2 versus the alternative of a strong or semi-strong factor Hk
1 : jk < 1=2. Note

that, differently from the previous section, here the weak factor is under the null hypothesis.
From Theorem 1 with Ŵ ¼ 1ffiffi

n
p ðT

ffiffiffi
n
p

~r2
b;kUkU0k þ

ffiffiffiffi
T
p

WnU0 þ
ffiffiffiffi
T
p

UW 0
n þ ZnÞ, we have under

Hk
0:

Dk :¼
ffiffiffi
n
p
½dkðV̂ yÞ � dkþ1ðV̂ yÞ� ) d1ðTcknkn

0
k þQ0ZQÞ � d2ðTcknkn

0
k þQ0ZQÞ; (35)

where the columns of Q spans the orthogonal complement of the range of U ¼ ½U1 : � � � :
Uk�1�; nk ¼ Q0Uk is a vector in R

T�kþ1 with unit norm, and ck ¼ limn1=2~r2
b;k > 0. The

asymptotic distribution is invariant to rotations of the columns of Q and nk. Under the
alternative hypothesis Hk

1, we have Dk!
p þ1 at rate Oðn1=2�jkÞ.

The asymptotic distribution in Equation (35) is not feasible because scalar ck and vector
nk are not known. Under a weak factor hypothesis, the vector of factor values Uk cannot be
estimated consistently from PCA (matrix Q instead can). In fact, the remainder term in the
asymptotic expansion (32) for j¼k is Opð1Þ if jk ¼ 1=2. To perform the test, we can adopt
a subsampling approach (see, e.g., Politis, Romano, and Wolf 1999) since the asymptotic
distribution in Equation (35) is well defined. We compute the values Db

k, for b ¼ 1; . . . ;B,
from B subsamples of size m (i.e., m-out-of-n bootstrap). The critical value for the test at
size a 2 ð0;1Þ is the 1� a quantile of the empirical distribution of the Db

k. We reject the null
hypothesis of a weak factor Hk

0 : jk ¼ 1=2 if the sample value Dk exceeds the critical
value.

Figure 4. Asymptotic local power of statistic SðkÞ under local alternatives in a non-Gaussian setting: we take

T¼ 2, k¼ 0, nominal size a ¼ 0:05, and g� ¼ g=q ¼ 5. The parameter u ¼ Q2
11 is the squared upper-left

element of matrix Q.
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5 Monte Carlo Analysis

This section explores the finite sample properties of the test statistics
ffiffiffi
n
p
SðkÞ; S�ðkÞ and

nT ðkÞ. We first introduce the four DGPs that we use in our Monte Carlo analysis and then
present the results for the size and power of the statistics.

5.1 DGPs

We use four DGPs. In DGP1, the betas and factor values are bi 

i:i:d: Nð0; IkÞ and

ft 

i:i:d: Nð0; IkÞ, and the error terms are ei;t 


i:i:d: Nð0;r2
i Þ, where the variances are uniform

random draws r2
i 


i:i:d: U½a; b� with a¼ 1 and b¼4. All random variables are mutually inde-
pendent. We generate 10,000 panels of returns of size n�T for each of the 100 draws of
the T� k factor matrix F, in order to keep the factor values constant within repetitions, but
also to study the potential heterogeneity of size and power results across different factor
paths. The factor betas and error variances are the same across all repetitions in all designs
of the section. We use k¼ 3 factors, three different cross-sectional sizes n¼ 500, 1000, and
5000, and three values of time-series dimension T¼ 6, 12, and 24.

DGP2 accommodates various types and strengths in the third factor:

bi 

i:i:d: Nð0;RbÞ; Rb ¼

1
1

cn�j

0
@

1
A;

where the values of exponent j are j¼ 0 (strong factor), j ¼ 0:25;0:4 (semi-strong), j ¼
0:5 (weak), and j ¼ 0:6;0:75; 1 (vanishing factor). The values for constant c are c¼ 0.1,

c¼ 1, and c¼ 10. Further, ft 

i:i:d: Nð0; I3Þ; ei;t 


i:i:d: Nð0;r2
i Þ, and r2

i 

i:i:d: U½a;b� and a¼ 1,

b¼ 4 as in DGP1. The case with j¼ 0 and c¼ 1 corresponds to DGP1. The sample sizes are
T¼ 6 and n¼ 500, 1000, and 5000. We display results for one given realization of the fac-
tor path.17

DGP3 is aimed at covering a setting with both non-normality and idiosyncratic conditional
heteroschedasticity of errors. Specifically, factor values and loadings are generated as in DGP2,
but the errors now follow independent Autoregressive Conditionally Heteroschedastic
dynamics of order 1, that is, ARCH(1), see Engle (1982), namely

ei;t ¼ h1=2
i;t ui;t; ui;t 
i:i:d:Nð0; 1Þ;

hi;t ¼ ci þ aie2
i;t�1;

where ci ¼ r2
i ð1� aiÞ; r2

i 

i:i:d:U½a;b� with a¼ 1, b¼ 4, and ai 


i:i:d:U½l;u� with l¼ 0.1 and
u¼ 0.4, all draws mutually independent. Here, we set u2 < 1=3 to ensure existence of the
fourth-order moments of errors. This specification matches the condition of sphericity of
errors in Assumption 2 with r2 ¼ ðaþ bÞ=2 (for a.e. draws of the random ARCH parame-
ters). The CLT condition in Assumption 4 is also met with a symmetric random matrix Z
such that Zt;t 
 Nð0;2qwð0ÞÞ; Zt;tþh 
 Nð0;q½1þ 2wðhÞ�Þ for h> 0, and CovðZt;t;

Ztþh;tþhÞ ¼ 2qwðhÞ, for h>0, where wðhÞ ¼ E ah
i

1�3a2
i

� �
¼
Ð u

l
ah

1�3a2 da. Any pair of elements

Zt;s; Zr;p, of which one or both are out of the diagonal, are independent. As the econometri-
cian may be unsure about the actual cross-sectional distribution of the ai parameters, she

17 The factor path is normalized after drawing the factor values such that ~Rf ¼ Ik. Consequently, c3 ¼ c in
Equation (31).
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can adopt a semi-non-parametric approach with respect to that distribution. It yields a
parametric specification XðhÞ for the variance–covariance matrix of vec(Z), with parameter
vector h ¼ ðq;wð0Þ;wð1Þ; . . . ;wðT � 1ÞÞ0 2 R

Tþ1. This specification nests the one with time
independence for wð1Þ ¼ � � � ¼ wðT � 1Þ ¼ 0 (then, g ¼ 2qwð0Þ), as well as Gaussian inde-
pendent errors when additionally wð0Þ ¼ 1. In the simulations, we use T¼ 12 and n¼ 500,
1000, and 5000. We estimate the parameter vector h using Equation (30). The order condi-
tion is met as long as k � 9 (here k¼ 2).

Finally, DGP4 involves instruments correlated with the factor loadings according to the
model

bi ¼ C0zi þ ui;

where zi 
i:i:d:Nð0; IKÞ and ui 
i:i:d:Nð0; IkÞ mutually independent for k¼ 3 and K¼ 10. The
K� k matrix C is obtained from the normalized eigenvectors associated with the non-zero
eigenvalues of GG0, where the K� k matrix G has i.i.d. standard normal entries. Moreover,

ft 
i:i:d:Nð0; IkÞ and ei 
i:i:d:Nð0; r2
i ITÞ with r2

i 

i:i:d:U½a; b� for a¼ 1, b¼ 4 as in DGPs 1 and 2.

5.2 Size and Power Results

We start with statistics
ffiffiffi
n
p
SðkÞ and S�ðkÞ based on the variance-covariance matrix of ex-

cess returns. The critical values are obtained from the procedure outlined in Section 3.3.1(i).
We provide the size and power results in % for DGP1 in Table 1. Size is close to its nominal
level 5% for both statistics, with size distortions smaller than 1%. The impact of the factor
values on size is very small, as expected from theory under Gaussian errors. The power
refers to the statistics computed with k¼ 2, for which DGP1 corresponds to a global alter-
native. It is generally larger for statistic

ffiffiffi
n
p
SðkÞ. It is coherent with the finding in Figure 3

when considering local alternatives. The power of both statistics varies with the factor path
especially for T¼ 6. It is a finite-n effect, which becomes weaker when T increases.

We provide the rejection frequencies in % for statistics
ffiffiffi
n
p
SðkÞ and S�ðkÞ under DGP2 in

Tables 2 and 3. For statistic
ffiffiffi
n
p
SðkÞ, the power against omitted strong, or semi-strong, fac-

tors (i.e., j < 0:5) is large for c¼1 and c¼ 10. As n grows, the rejection frequency is

Table 1. For each statistic and sample size combination (n, T), we provide the size and power in % under

DGP1

Size and power under DGP1

Size (%) Power (%)

T 6 12 24 6 12 24ffiffiffi
n
p
SðkÞ n¼500 4.4 5.6 6.2 92 100 100

(0.81) (0.22) (0.24) (16.1) (0.0) (0.0)
n¼1000 4.4 5.4 5.7 92 100 100

(0.82) (0.24) (0.24) (18.9) (0.0) (0.0)
n¼5000 4.7 5.3 5.2 99 100 100

(0.39) (0.21) (0.21) (6.9) (0.0) (0.0)

S�ðkÞ n¼500 5.9 5.1 5.2 0.59 69 97
(0.36) (0.21) (0.23) (29.6) (24.9) (4.4)

n¼1000 5.7 5.0 5.1 69 89 100
(0.35) (0.21) (0.21) (32.0) (14.8) (1.2)

n¼5000 5.5 4.8 5.0 92 99 100
(0.27) (0.21) (0.21) (20.1) (6.2) (0.0)

Nominal size is 5%. Power refers to rejection frequencies for statistics
ffiffiffi
n
p
Sð2Þ and S�ð2Þ. In parentheses, we

report the standard deviations for size and power across 100 different draws of the factor path.
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expected to converge to 100%; the convergence is quicker for small j and/or large c. With
vanishing factors, that is, j > 0:5, the finite sample size of the statistic is close to its nominal
size 5% with c¼0.1 and c¼ 1. We find a few oversize effects for c¼10. In all cases, the re-
jection frequency gets closer to 5% when n increases, as expected. With a weak factor, that
is, j ¼ 0:5, the power of the statistic

ffiffiffi
n
p
SðkÞ increases from about 5% with c¼ 0.1 to

100% with c¼ 1. Table 3 shows that the results are qualitative similar for statistic S�ðkÞ
but with smaller power and oversize effects.

For a given sample size, the rejection rate for a semi-strong factor with small c can be sim-
ilar to that for a vanishing factor with larger constant c. For instance, for n¼ 1000, the
cases j ¼ 0:25; c ¼ 0:1 and j ¼ 0:60; c ¼ 1 yield the same rejection rate 0.066 for statistic

Table 2. We report the rejection frequency in % of statistic
ffiffiffi
n
p
Sð2Þ for each combination of constants c and j

in the parameterization of the beta variance r2
b;3 ¼ cn�j of the third factor, and cross-sectional size n

Rejection rates of
ffiffiffi
n
p
SðkÞ, k¼2, for DGP2

j 0 0.25 0.40 0.50 0.60 0.75 1
strong semi-strong weak vanishing

% c¼0.1
n¼500 5.5 6.9 5.6 5.2 5.3 5.1 5.0
n¼1000 86 6.6 5.4 5.1 5.4 5.2 5.4
n¼5000 100 10 5.6 5.3 5.0 5.1 5.4

% c¼1
n¼500 100 100 40 13 7.3 5.5 5.0
n¼1000 100 100 44 13 6.6 5.5 5.0
n¼5000 100 100 59 13 6.2 5.2 5.0

% c¼10
n¼500 100 100 100 100 100 50 7.0
n¼1000 100 100 100 100 100 34 5.8
n¼5000 100 100 100 100 99 16 5.0

The time series dimension is T¼ 6.

Table 3. We report the rejection frequency in % of statistic S�ð2Þ for each combination of constants c and j in

the parameterization of the beta variance r2
b;3 ¼ cn�j of the third factor, and cross-sectional size n

Rejection rates of S�ðkÞ, k¼2, for DGP2

j 0 0.25 0.40 0.50 0.60 0.75 1
strong semi-strong weak vanishing

% c¼0.1
n¼500 9 5.8 5.4 5.9 5.8 5.8 5.5
n¼1000 14 5.5 5.0 5.5 5.1 5.3 4.7
n¼5000 47 5.3 5.0 5.4 4.9 5.0 5.3

% c¼1
n¼500 98 25 7.9 6.7 5.6 5.8 5.5
n¼1000 100 32 8.7 6.0 5.3 5.3 5.2
n¼5000 100 58 9.9 6.0 5.5 4.9 4.8

% c¼10
n¼500 99 99 96 64 29 10 5.5
n¼1000 100 100 98 66 26 8 5.2
n¼5000 100 100 100 71 23 6 5.4

The time series dimension is T¼ 6.
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ffiffiffi
n
p
SðkÞ in Table 2. In fact, in finite sample, only quantity cn�j matters. The Pitman drifting

DGP in Equation (31) is merely a mathematical tool to analyze the asymptotic behavior of
the test locally around the null or the global alternative hypotheses. Tables 2 and 3 show
that the cross-sectional size n, for which the asymptotic regime is reached, depends on the
combination of values j; c.

Tables 4 and 5 provide the rejection frequencies in % for statistics
ffiffiffi
n
p
SðkÞ and S�ðkÞ for

DGP3 with ARCH(1) errors. The size and power properties are good, with rejection fre-
quencies that are rather close to those with Gaussian errors displayed in Tables 2 and 3. It
confirms that the procedure presented in Section 3.3.1 ii) to define a feasible test statistic

Table 4. We report the rejection frequency in % of statistic
ffiffiffi
n
p
Sð2Þ for each combination of constants c and j

in the parameterization of the beta variance r2
b;3 ¼ cn�j of the third factor, and cross-sectional size n

Rejection rates of
ffiffiffi
n
p
SðkÞ, k¼2, for DGP3

j 0 0.25 0.4 0.5 0.6 0.75 1
strong semi-strong weak vanishing

% c¼0.1
n¼500 85 6.8 6.4 5.9 6.1 6.0 5.7
n¼1000 100 8.7 6.3 5.8 6.1 5.9 5.3
n¼5000 100 14 5.7 5.3 5.4 5.3 4.7

% c¼1
n¼500 100 100 79 20 9.2 6.7 6.0
n¼1000 100 100 78 22 8.1 5.6 5.2
n¼5000 100 100 96 20 6.9 5.1 5.3

% c¼10
n¼500 100 100 100 100 100 85 8.0
n¼1000 100 100 100 100 100 68 6.1
n¼5000 100 100 100 100 100 30 5.5

The time series dimension is T¼ 6. The errors follow individual ARCH(1) processes.

Table 5. We report the rejection frequency in % of statistic S�ð2Þ for each combination of constants c and j in

the parameterization of the beta variance r2
b;3 ¼ cn�j of the third factor, and cross-sectional size n

Rejection rates of S�ðkÞ, k¼2, for DGP3

j 0 0.25 0.4 0.5 0.6 0.75 1
strong semi-strong weak vanishing

% c¼0.1
n¼500 8.8 5.4 5.6 5.1 5.7 5.3 6.1
n¼1000 15 5.4 5.5 5.0 4.8 5.1 5.1
n¼5000 53 5.3 5.3 5.4 5.0 5.0 5.6

% c¼1
n¼500 98 26 9.1 5.6 5.4 5.9 5.4
n¼1000 100 33 9.0 6.1 5.1 5.6 5.2
n¼5000 100 65 9.4 5.8 5.2 5.3 6.1

% c¼10
n¼500 98 98 98 73 30 9.2 5.6
n¼1000 100 100 99 78 34 8.1 5.4
n¼5000 100 100 100 76 24 6.4 5.3

The time series dimension is T¼ 12. The errors follow individual ARCH(1) processes.
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works well in the setting with idiosyncratic conditional heteroscedasticity yielding non-
Gaussian errors.

Finally, we consider the statistic based on the variance–covariance matrix of instrument-
weighted portfolio returns. Table 6 presents the size and power for the statistic T ðkÞ with
different values of sample sizes T and n. Results are averaged over 100 different realizations
of F and C, and standard errors in percent are given in parentheses. To simulate the critical
values, in the upper panel of Table 6 we use the estimator R̂U;1 ¼ r̂2½IT 	 Q̂zz� defined in
Section 3.2.1, that is valid in the homoscedastic setting of DGP4. The lower panel uses the
more general estimator R̂U;2 ¼ 1

n

Pn
i¼1½ðêiê

0
iÞ 	 ðziz0iÞ�. Overall, size distortions are rather

small, except for some evidence of undersize for the statistic using the more general variance
estimator R̂U;2 when n is small. Power is close to 100% across all combinations in our
experiment.

6 Empirical Application

In this section, we present the results of an empirical application to testing for latent factors
in short subperiods of the CRSP dataset. We consider monthly returns of individual stocks
between January 1963 and December 2021. We focus on subperiods defined by the bear
versus bull market classification introduced in Lunde and Timmermann (2004). We con-
sider the three statistics

ffiffiffi
n
p
SðkÞ; S�ðkÞ and nT ðkÞ, and compute their p-values for testing

different values of the number of latent factor k. For the third statistic, as instruments, we
use the 12 stock characteristics in Freyberger, Neuhierl, and Weber (2020) (see also
Gagliardini and Ma 2019) measured at the date prior to the subperiod start. The 12 charac-
teristics are grouped into four categories: (i) past returns variables, which are return from 2
to 1 month (1-month horizon) before the current period (r2�1), return from 12 to 2 months
(10-month horizon) before the current period (r12�2), return from 12 to 7 months (5 months
horizon) before current period (r12�7), and return from 36 to 13 months (23 months

Table 6. For each sample size combination (n, T), we provide the size and power in % under DGP4 for the

test statistic based on instruments

Size and power of nT ðkÞ under DGP4

Size (%) Power (%)

T 6 12 24 6 12 24

R̂U;1 n¼500 4.58 4.78 4.83 99 100 100
(0.54) (0.19) (0.22) (7.0) (0.0) (0.0)

n¼1000 4.83 4.91 4.94 100 100 100
(0.23) (0.22) (0.19) (4.8) (0.0) (0.0)

n¼5000 4.97 5.00 5.03 100 100 100
(0.23) (0.21) (0.21) (0.0) (0.0) (0.0)

R̂U;2 n¼500 3.94 3.37 2.30 99 100 100
(0.42) (0.19) (0.16) (7.0) (0.0) (0.0)

n¼1000 4.49 4.10 3.36 100 100 100
(0.23) (0.19) (0.18) (0.0) (0.0) (0.0)

n¼5000 4.95 4.80 4.64 100 100 100
(0.23) (0.21) (0.18) (0.0) (0.0) (0.0)

Nominal size is 5%. Size and power refer to rejection frequencies for statistics nT ðkÞ with k¼ 3 and k¼ 2,
respectively. In parentheses, we report the standard deviations for size and power across 100 different draws of
the factor path F and the matrix C linking betas to instruments. The upper panel uses the estimator
R̂U;1 ¼ r̂2½IT 	 Q̂zz� for simulating the critical values, and the lower panel uses R̂U;2 ¼ 1

n

Pn
i¼1½ðê i ê

0
iÞ 	 ðziz0 iÞ�.
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horizon) before current period (r36�13); (ii) profitability-related characteristics, which are
earnings per share, return on asset, return on equity; (iii) value-related characteristics, which
are total assets to size (A2ME), sales to price (S2P), and (iv) trading friction variables, which
include total assets (AT), price times shares outstanding (LME), and last month’s volume to
shares outstanding (LTurnover). We collect them from the COMPUSTAT database. Some
of these instruments are recorded at frequencies lower than monthly, namely yearly, and the
instrument values are considered constant within a year. For comparison purposes, for each
test statistic and subperiod, we use the balanced panel of stocks with available return and
instrument data at all months. Relying on short time spans mitigates the concern of
survivorship bias inherent to the use of balanced panels.

Our empirical evidence based on a fixed T can target particular periods. We focus on
three time spans of T¼12 months for illustrative purposes: (I) from 1977/03 to 1978/2,
with n¼1781 stocks, (II) 1981/07–1982/06, with n¼ 1821, (III) 2010/12-2011/11, with
n¼ 3129 in the balance panels. We also consider a fourth period of T¼ 24 months (IV)
2020/01–2021/12, with n¼ 2418. Periods (I) and (III) are classified as “bull market,” and
periods (II) and (IV) as “bear market,” according to Lunde and Timmermann (2004). The
last subperiod (IV) essentially corresponds to the Covid-19 pandemic. In Figure 5, we dis-
play the key inputs for our test statistics in subperiod (I), namely the eigenvalues’ spacings
and their ratios for the matrix V̂ y of second-order moments of returns, as well as the eigen-
values for variance matrix V̂ n built from instrument-based portfolios. Figure 6 reports the
p-values of the three test statistics for the same subperiod. We display eigenvalues and test
results for subperiods (II) to (IV) in Figures 7–12.
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Figure 5. Eigenvalue spacings of matrix matrix V̂ y (upper panel), their ratios (middle panel), and eigenvalues

of matrix V̂ n (lower panel) for the period from March 1977 to February 1978. This period is classified as “bull

market” according to Lunde and Timmermann (2004) methodology.
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Figure 6. The figure displays the p-values for statistics SðkÞ (upper panel), S�ðkÞ (middle panel), and T ðkÞ
(lower panel) for the period from March 1977 to February 1978. This period is classified as “bull market”

according to Lunde and Timmermann (2004) methodology.
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Figure 7. Eigenvalue spacings of matrix matrix V̂ y (upper panel), their ratios (middle panel), and eigenvalues

of matrix V̂ n (lower panel) for the period from July 1981 to June 1982. This period is classified as “bear

market” according to Lunde and Timmermann (2004) methodology.
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In Figure 5, upper panel, we see that the eigenvalues differences djðV̂ yÞ � djþ1ðV̂ yÞ are
very small from order j¼ 5 onward. In accordance with this feature, in Figure 6, the statisticffiffiffi

n
p
SðkÞ rejects the null hypothesis H0ðkÞ for k ¼ 0;1;2;3 factors at level 5% (and even

smaller), while the p-value for the test of k¼ 4 factors is about 0.09. The middle panel of

Figure 5 shows that the eigenvalue spacings ratio djðV̂ yÞ�djþ1ðV̂ yÞ
djþ1ðV̂ yÞ�djþ2ðV̂ yÞ

for j¼ 1 is very large, while

the other ratios are small. Then, the statistic S�ðkÞ for k¼ 0 is beyond the critical value and
rejects the null hypothesis of no latent factor in the panel of excess returns in subperiod
1977/03 to 1978/2, even at 1% level, while it does not reject the null hypothesis of a single
factor, see Figure 5 middle panel. With test statistic nT ðkÞ, we reject the null H0ðkÞ for four
latent factors or less, while the p-value for k¼ 5 factors is about 0.10. Hence, the four larg-
est eigenvalues of V̂ n in the lower panel of Figure 5 are statistically significantly different
from zero while the other eigenvalues are not.

The results obtained with statistics
ffiffiffi
n
p
SðkÞ and nT ðkÞ are rather concordant, in each of

the four subperiods under consideration. Both statistics lead to the same acceptance/rejec-
tion decisions in most cases. The discrepancies about the smallest order k with p-values
above 5%, say, are at most of one unit. For instance, this order is k¼ 4 for

ffiffiffi
n
p
SðkÞ and

k¼ 5 for nT ðkÞ in 1977/3–1978/2 (Figure 6), whereas k¼ 7 for both statistics in 1981/7–
1982/6 (Figure 8). A large number of factors might point at time-varying betas with com-
mon instruments, namely scaled factors (Cochrane 2005). With a penalization method,
Bakalli, Guerrier, and Scaillet (2023) show the predominance of selected common instru-
ments over selected stock-specific instruments in the factor loading dynamics. It is
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Figure 8. The figure displays the p-values for statistics SðkÞ (upper panel), S�ðkÞ (middle panel), and T ðkÞ
(lower panel) for the period from July 1981 to June 1982. This period is classified as “bear market” according

to Lunde and Timmermann (2004) methodology.
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worthwhile recalling that statistics
ffiffiffi
n
p
SðkÞ and nT ðkÞ rely on different identification princi-

ples, that is, errors sphericity for the former and instruments validity for the latter. Hence,
concordance in the results across the two statistics provides a first robustness check for our
findings vis-à-vis the identification assumptions. On the contrary, statistic S�ðkÞ based on
eigenvalue spacings ratios tends to fail to reject null hypotheses with small numbers of latent
factors, such as zero or one factor. We interpret this finding as a consequence of the low
power of the S�ðkÞ statistic already pointed out in our numerical experiments (see Figure 3)
and Monte Carlo simulations (see Section 5).

When comparing the test results across the four subperiods, our findings seem to point to
a rather similar number of latent factors in the bull and bear market periods: the test statis-
tics

ffiffiffi
n
p
SðkÞ and nT ðkÞ fail to reject null hypotheses with 5–7 latent factors in both cases.

We do not see a clear pattern relating monotonically the number of latent factors to the
bear versus bull market phases, in particular we do not find a conclusive evidence for a
smaller number of latent factors during bear market phases compared to market upturns, at
least in those subperiods.18 In particular, our results contradict the common wisdom that
every equity return series correlate to 1 (or at least close to) and everything boils down to a
single factor model (or at least close to) in bear periods.

0 2 4 6 8 10 12
0

0.05

0 2 4 6 8 10 12
0

10

20

0 2 4 6 8 10 12
0

0.01

0.02

Figure 9. Eigenvalue spacings of matrix V̂ y (upper panel), their ratios (middle panel), and eigenvalues of

matrix V̂ n (lower panel) for the period from December 2010 to November 2011. This period is classified as

“bull market” according to Lunde and Timmermann (2004) methodology.

18 Besides, a selection rule for the number of latent factors based on sequential testing with our statistics
would find more latent factors in the bear market periods (II) and (IV) than in bull market periods (I) and (III).
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Figure 10. The figure displays the p-values for statistics SðkÞ (upper panel), S�ðkÞ (middle panel), and T ðkÞ
(lower panel) for the period from December 2010 to November 2011. This period is classified as “bull

market” according to Lunde and Timmermann (2004) methodology.
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Figure 11. Eigenvalue spacings of matrix V̂ y (upper panel), their ratios (middle panel), and eigenvalues of

matrix V̂ n (lower panel) for the period from January 2020 to December 2021. We associate this period in our

sample to the Covid-19 pandemic.
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7 Concluding Remarks

In this article, we develop new tests for the number of latent factors in short panels.
Identification relies either on a sphericity assumption on the error terms, or on availability
of instruments. The derivation of the asymptotic distributions for n!1 and fixed T lever-
ages on (i) a uniform perturbation expansion for the small eigenvalues of symmetric matri-
ces and (ii) the distributions of eigenvalues (spacings) of Gaussian matrices of finite
dimension. The setting is general enough to accommodate various forms for the factor
strength, namely strong, semi-strong, weak, and vanishing factors when defining the null
and alternative hypotheses. We also introduce a novel test for weak factors against (semi-
)strong factors. In an empirical application for short subperiods of the CRSP panel dataset,
p-values suggest relative stability in the number of latent factors across market downturns
and market upturns with 5–7 factors. Our findings bring evidence against the common wis-
dom that a (near to) single factor model with (near to) unit correlation among any pair of
series prevails in bear market phases.
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Figure 12. The figure displays the p-values for statistics SðkÞ (upper panel), S�ðkÞ (middle panel), and T ðkÞ
(lower panel) for the period from January 2020 to December 2021. We associate this period in our sample to

the Covid-19 pandemic.
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Appendix: Proof of Theorem 1

Let Ŵ be the K� ðK� kÞ matrix of the standardized eigenvectors of Â associated with the
K � k smallest eigenvalues, and K̂ ¼ diagðdjðÂÞ; j ¼ kþ 1; . . . ;KÞ the diagonal matrix with
these eigenvalues along the diagonal. Then:

ÂŴ ¼ Ŵ K̂: (A.1)

Let Q be a K� ðK� kÞ matrix whose columns are an orthonormal basis of the null space
of matrix A so that Q0U and Q0Q give the null and identity matrices. Since the columns of
U and Q jointly span R

K, we can write

Ŵ ¼ QR̂ þUŜ; (A.2)

where R̂ and Ŝ are ðK� kÞ � ðK� kÞ, resp. k� ðK� kÞ, matrices.
By plugging Equations (22) and (A.2) into Equation (A.1), we get:

UDŜ þ ŴQR̂ þ ŴUŜ ¼ QR̂K̂ þUŜK̂; (A.3)

since U0U gives the identity matrix. Pre-multiplying both sides of Equation (A.3) by Q0, we
get Q0ŴQR̂ þQ0ŴUŜ ¼ R̂K̂, which yields:

K̂ ¼ R̂
�1ðQ0ŴQÞR̂ þ R̂

�1ðQ0ŴUÞŜ: (A.4)

(We show below that R̂ is invertible). Similarly, by pre-multiplying both sides of Equation
(A.3) by U0, we get DŜ þU0ŴQR̂ þU0ŴUŜ ¼ ŜK̂, which yields:

Ŝ ¼ D�1ð�U0ŴQR̂ �U0ŴUŜ þ ŜK̂Þ: (A.5)

Let us now derive an expansion for K̂ from Equations (A.4) and (A.5). First, from the
Weilandt–Hoffmann inequality (see Tao 2012, p. 137), we know

PK
j¼1 j

djðAþ ŴÞ � djðAÞj2 � jjŴjj2, which implies

jjK̂jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

j¼kþ1

djðÂÞ2
vuut � jjŴjj:

Second, from Equation (A.2), we get IK�k ¼ Ŵ
0
Ŵ ¼ R̂

0
R̂ þ Ŝ

0
Ŝ, which implies

jjR̂jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðR̂0R̂Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
K� k
p

. Third, using the above bounds and jjUjj ¼
ffiffiffi
k
p

and

jjQjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K� k
p

, Equation (A.5) yields:

jjŜjj � jjD�1jj
�

K3=2jjŴjj þ ðKþ 1ÞjjŴjjjjŜjj
�
:

Thus, if jjŴjj � 1
2jjD�1jjðKþ1Þ, then

jjŜjj � 2jjD�1jjK3=2jjŴjj: (A.6)
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From Equation (A.5), we get that, if jjŴjj � 1
2jjD�1jjðKþ1Þ, then

Ŝ ¼ �D�1U0ŴQR̂ þOðjjD�1jj2K5=2jjŴjj2Þ; (A.7)

where the bound OðjjD�1jj2K5=2jjŴjj2Þ is uniform.19 Moreover, using jjŴjj �
1

3jjD�1jjðKþ1Þ3=2, we get from Inequality (A.6) that jjŜjj � 2=3, and thus jjIK�k � R̂
0
R̂jj �

ð2=3Þ2 and R̂ is invertible.
We now plug Equation (A.7) into the RHS of Equation (A.4) to get an expansion for K̂.

In order to control the remainder term, we need a bound on jjR̂�1jj. We have:

jjR̂�1jj2 ¼ Tr
�
ðR̂�1Þ0ðR̂�1Þ

�
¼ Tr

�
ðR̂0R̂Þ�1

�

¼
XK�k

j¼1

dj

�
ðR̂0R̂Þ�1

�
� ðK� kÞd1

�
ðR̂0R̂Þ�1

�
¼ K� k

dK�kðR̂
0
R̂Þ

:

(A.8)

Further, using the equation R̂
0
R̂ ¼ IK�k � Ŝ

0
Ŝ that we derived above, as well as the

Courant–Fischer formula, which represents eigenvalues as solutions of constrained qua-
dratic optimization problems (see Appendix 2 of Gagliardini, Ossola, and Scaillet 2019),
we have:

dK�kðR̂
0
R̂Þ ¼ minx2RK�k:jjxjj¼1 x0ðR̂0R̂Þx ¼ 1�maxx2RK�k:jjxjj¼1 x0ðŜ0ŜÞx

¼ 1� d1ðŜ
0
ŜÞ � 1� jjŜjj2 � 1� 4jjD�1jj2K3jjŴjj2;

if jjŴjj � 1
2jjD�1jjðKþ1Þ, where we use Equation (A.6) for obtaining the last inequality. Hence,

if jjŴjj � 1
3jjD�1jjðKþ1Þ3=2, then dK�kðR̂

0
R̂Þ � 1� 4

9
K3

ðKþ1Þ3 � 1=2, which yields jjR̂�1jj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðK� kÞ

p
from Equation (A.8). Equipped with the last inequality, we plug Equation (A.7)

into the RHS of Equation (A.4) and get:

K̂ ¼ R̂
�1
�

Q0ŴQ� ðQ0ŴUÞD�1ðU0ŴQÞ
�

R̂ þOðjjD�1jj2K4jjŴjj3Þ; (A.9)

where the remainder term is uniform, if jjŴjj � 1
3jjD�1jjðKþ1Þ3=2

.

Now we use dkþjðÂÞ ¼ djðK̂Þ, Equation (A.9) and the Weilandt–Hoffmann inequality to
get:

dkþjðÂÞ ¼ dj

�
R̂
�1
�

Q0ŴQ� ðQ0ŴUÞD�1ðU0ŴQÞ
�

R̂
�
þOðjjD�1jj2K4jjŴjj3Þ

¼ dj

�
Q0ŴQ� ðQ0ŴUÞD�1ðU0ŴQÞ

�
þOðjjD�1jj2K4jjŴjj3Þ;

where the second equality holds because matrices A and R�1AR have the same eigenvalues.
The conclusion follows.

19 By this, we mean that OðjjD�1jj2K5=2jjŴjj2Þ � CjjD�1jj2K5=2jjŴjj2 for a universal constant C that is inde-
pendent of A, Ŵ, and K.
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paper (University of Geneva, Università della Svizzera italiana and Swiss Finance Institute).
Freyberger, J., A. Neuhierl, and M. Weber. 2020. Dissecting Characteristics Nonparametrically. The

Review of Financial Studies 33: 2326–2377.
Gagliardini, P., and C. Gourieroux. 2017. Double Instrumental Variable Estimation of Interaction Models

with Big Data. Journal of Econometrics 201: 176–197.

Fortin et al. j Eigenvalue Tests in Short Panels 39

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/advance-article/doi/10.1093/jjfinec/nbad024/7271793 by Biblioteca universitaria di Lugano user on 04 Septem

ber 2024

https://doi.org/10.1016/j.jeconom.2022.12.004
https://doi.org/10.1016/j.jeconom.2022.12.004


Gagliardini, P., and H. Ma. 2019. “Extracting Statistical Factors When Betas are Time-varying.” SSRN
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